首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
G. Guerao 《Marine Biology》1995,122(1):115-119
Diel activity rhythms of the prawn Palaemon xiphias Risso, 1818 from Alfacs Bay, Ebro Delta, were studied by time-lapse videorecordings. Activity displayed an endogenous circadian rhythm, with maximum activity at night. Feeding habits were studied by frequency of occurrence and by the points method. The food of P. xiphias consisted mainly of crustaceans; the remains of amphipods, isopods, mysids, copepods, decapods and ostracods were identified. The remaining items consisted of molluscs, polychaetes, ophiuroids, plant material, sand, and unidentified organic debris. The results indicate that P. xiphias is a predator of benthic invertebrates rather than a scavenger or detritus feeder. Diet composition changes with increasing size of the prawn.  相似文献   

2.
J. B. Lewis 《Marine Biology》1976,36(2):147-150
The ability of 15 species of Atlantic reef corals to act as suspension feeders was demonstrated by their removal of suspended particles from sea water in culture vessels. Mean clearance rates varied from 16.6 to 145.5 ml water cleared/h/cm2 of live coral tissue. The lowest rates was found in Porites porites which is primarily a tentacle feeder, and the highest in Diploria clivosa which acts as both a tentacle feeder and suspension feeder. Rates of particle clearance in Agaricia agaricites, which is primarily a suspension feeder, were influenced by current velocity and type of food.  相似文献   

3.
In an experimental set-up, a colony of the stingless bee Melipona fasciata demonstrated its ability to choose the better of two nectar sources. This colony pattern was a result of the following individual behavioural decisions: continue foraging, abandon the feeder, restart foraging and initiate foraging. Only very rarely did individuals switch from one feeder to the other. With the first combination of a rich (2.7 M) and a poor (0.8 M) feeder M. fasciata behaved differently from Apis mellifera. Recruitment occurred to both feeders and the poor feeder was not abandoned completely. When the poor feeder was set to 0.4 M, M. fasciata abandoned the poor feeder rapidly and allocated more foragers to the rich feeder. These patterns were similar to those reported for A. mellifera with the first combination of feeders. Over a sequence of 4 days, experienced bees increasingly determined the colony patterns, and the major function of communication between workers became the reactivation of experienced foragers. The foragers modulated their behaviour not only according to the profitability of the feeder, but also according to previous experience with profitability switches. Thus, experience and communication together regulated colony foraging behaviour. These findings and the results of studies with honeybees suggest that M. fasciata and honeybees use similar decision-making mechanisms and only partly different tools. Received: 21 December 1998 / Accepted: 5 January 1999  相似文献   

4.
Melipona panamica foragers can deposit a scent beacon that influences the orientation of foragers near a food source. In misdirection experiments, newcomers (bees from the same colony as trained foragers) consistently preferred the feeder at which trained foragers had fed (training feeder) over an identical feeder at which bees had never fed (control feeder) even when the training feeder was placed at a site where experienced foragers had never foraged. Through similar misdirection experiments, the effective radius of the scent beacon was determined to be greater than 6 and less than 12 m. Foragers may deposit this beacon during a sequence of departure behaviors performed at the feeder. Prior to leaving the feeder with a load of sugar solution, bees tended to perform the following sequence of behaviors: (1) spinning, (2) grooming, (3) abdomen dragging, (4) excreting anal droplets, and (5) producing sounds, although not all behaviors were performed prior to each departure or at all sucrose concentrations (0.5–2.5 m). As sucrose concentration increased, the number of newcomers significantly increased, and the number of experienced foragers producing sounds and spinning on the feeder increased. The exact source of the scent beacon remains a mystery. However, three important sources have been excluded. When choosing between identical paired feeders, foragers were not attracted to the feeders with (1) anal droplets, (2) extracts of sucrose solution at which foragers had fed, or (3) mandibular gland extracts. They were indifferent to the first two preparations and exhibited only typical alarm behavior towards the mandibular gland (MG) extract: they oriented towards the feeder with MG extract but consistently landed on the feeder with no MG extract. Other authors have suggested that Melipona foragers deposit anal droplets to attract recruits, however the frequency of anal droplet production and the mass of anal droplets produced by M. panamica foragers are negatively correlated with sucrose concentration. Thus the scent beacon is evidently not deposited with anal droplets, infused into the feeder solution, or produced by mandibular glands. Received: 2 September 1997 / Accepted after revision: 30 January 1998  相似文献   

5.
Size-frequency distributions were determined for 3 common lantern-fishes (Stenobrachius leucopsarus, Diaphus theta, and Tarletonbeania crenularis) off Oregon in the summer. The fishes were caught mainly in sound-scattering layers by a large pelagic trawl with 5 opening-closing nets. Changes in depth distribution and diel vertical migration with growth were evident for all 3 species. The size of S. leucopsarus increased markedly with depth both at 0 to 90 m at night and 250 to 500 m during the day. Larger D. theta were also found deeper during the day (between 250 and 450 m), but neither D. theta nor T. crenularis demonstrated size segregation in the upper 90 m at night. Large D. theta and small T. crenularis did not appear to migrate into surface waters at night. Age-Group O (15 to 20 mm) S. leucopsarus were most abundant in deep water (400 to 480 m) in the daytime and did not migrate into near-surface waters at night. Age-Group I (30 to 40 mm) S. leucopsarus were common at about 300 m by day and within the upper 30 m at night. Age-Group II–III (50 to 60 mm) apparently followed the evening ascent of Age-Group I fish and most resided at 75 to 90 m at night, beneath Age-Group I fish. Age-Group III+fish (70 to 80 mm) were associated with Age-Group O at 400 to 480 m by day and usually did not migrate above 200 m at night. The size structure of S. leucopsarus differed among the nets of a single tow at one depth, or between two tows that fished the same depths on successive nights, indicating horizontal patchiness in age structure. D. theta demonstrated low within-tow variability in size composition which indicated a spatially more uniform age structure on a scale of kilometers. The size structures of these 3 lanternfishes were different in the same area and the same season during two different years, suggesting variable survival of year classes or horizontal patchiness of age composition in the area sampled.  相似文献   

6.
An exceptionally large midwater trawl (50 m2 mouth area) with 5 opening and closing codends was towed horizontally in the lower mesopelagic zone at depths of 500, 650, 800 and 1000 m off Oregon (USA) from 1–6 September, 1978. In comparison to more conventional trawls, ours collected more fish, including rare species and large individuals of common species. Comparison of collections made by day and by night revealed that 12 of the 15 most common species probably migrated vertically. Bathylagus milleri evidently migrates from 650 m during the day to 500 m at night. Cyclothone acclinidens and C. atraria were more abundant by night than by day at 800 m, possibly due to an upward migration from deeper depths at night. C. pseudopallida, C. signata, Chauliodus macouni, Tactostoma macropus and Stenobrachius leucopsarus were more abundant by day than by night at 500 m, suggesting that they migrated out of this depth horizon at night. Lampanyctus regalis, and large individuals of B. pacificus were more abundant by night than by day at 500 m, possibly because they migrated upward from near 650 m. Many species exhibited trends of increasing or decreasing size with depth, and several species showed changes in migratory behavior with size. For example, only small (<240 mm) T. macropus migrated vertically, whereas only large (>110 mm) B. pacificus appeared to migrate. Depths of maximum abundance of congeneric species were usually separated. B. milleri and B. pacificus had similar distributions by day, but the former was shallower at night. S. leucopsarus tended to live shallower than S. nannochir both day and night. Congeners always occurring at the same depth were Cyclothone pseudopallida and C. signata (both most abundant at 500 m) and C. acclinidens and C. atraria (both most abundant at 800 m).  相似文献   

7.
Summary. The bolas spider, Mastophora hutchinsoni, attracts Lacinipolia renigera and Tetanolita mynesalis males by mimicking the female moth sex pheromones. However, as the prey species use completely different pheromone blends we conducted experiments to determine how this is accomplished by the predator. The periodicity of L. renigera mate-seeking activities occurs early in the scotophase, whereas male T. mynesalis are active late at night, corresponding with periods when these moths are captured by the spider. The pheromone blend of early-flying L. renigera interferes with attraction of late-flying T. mynesalis to its pheromone in a dose-dependent manner, suggesting the spider must always produce a single sub-optimal “compromise” blend for both species or that it adjusts its allomonal blend to optimize capture of the respective prey species at different times during the night. We delayed (L. renigera) or advanced (T. mynesalis) the periodicity of male activity through photoperiodic manipulation and found that the bolas spider attracted both prey species outside their normal activity windows. These results support the idea that bolas spiders produce components of both species at all times rather than producing the pheromone of each prey species at different times of the night. However, using coupled gas chromatography-electroantennography, we also demonstrated that the spider decreases its emission of the L. renigera pheromone over the course of the night. This modification should reduce the behavioral antagonism of the L. renigera pheromone on T. mynesalis males and increase the predator's success of attracting T. mynesalis during this prey's normal activity window late at night. Received 13 October 2001; accepted 28 December 2001.  相似文献   

8.
Amphipods along the western Antarctic Peninsula appear to gain refuge from predators by associating with chemically defended macroalgae rather than palatable macroalgae. However, nothing is known about amphipod activity at night. If foraging on non-chemically defended macroalgae regularly occurs, then nocturnal foraging seems beneficial since visual predators are disadvantaged. To test this hypothesis, we collected three common macroalgal species and affiliated mesograzers, approximately 3 h before and after sunset. All associated mesofauna were counted and densities recorded. Amphipod densities were significantly decreased during the night on the chemically defended Desmarestia menziesii, while significantly increased on the palatable Iridaea cordata. Additionally, the amphipod Gondogeneia antarctica was found in significantly higher densities at night on Palmaria decipiens, a species shown to be readily eaten by G. antarctica and omnivorous fish. We believe that chemically defended macroalgae act as a refuge for mesograzers during the day, while more widespread foraging occurs at night.  相似文献   

9.
Two abundant macrozooplankters, Oikopleura vanhoeffeni (Lohmann) and Calanus finmarchicus (Gunnerus) were collected from the coastal waters off Newfoundland in different seasons during 1990–1991 and incubated in natural seawater to collect freshly egested, field produced, fecal pellets. The densities of fecal pellets from O. vanhoeffeni and C. finmarchicus were measured in an isosmotic density gradient. These are the first reported seasonal measurements of fecal pellet densities from two different types of macrozooplankters, O. vanhoeffeni, a larvacean, filter feeder and C. finmarchicus, a crustacean, suspension feeder. Pellet density ranges and medians were significantly different among seasons for both species, depending primarily on the type of phytoplankton ingested and its ability to be compacted. Winter O. vanhoeffeni and fall C. finmarchicus feces filled with nanoplankters and soft bodied organisms had less open space [packing index (% open area) = 3.5 and 4% for O. vanhoeffeni and C. finmarchicus, respectively] and were more dense (1.23 and 1.19 g cm-3) than spring feces filled with diatoms (packing index = 15 and 23%, density = 1.13 and 1.11 gcm-3). For copepods, these results contrast with previously published density values and with the predicted copepod fecal pellet density calculated, in the present study, using the conventional mass/volume relationship. Copepod spring and summer diatom-filled feces had a calculated density of 1.12 and 1.24 gcm-3 vs a measured median density of 1.11 gcm-3 for both spring and summer feces; the fall feces containing nanoplankters had a calculated density of 1.08 gcm-3 vs a measured median density of 1.19 gcm-3. Knowledge of the seasonal variations in fecal pellet densities is important for the development of flux models.  相似文献   

10.
Movement rate, oxygen consumption, and respiratory tree ammonium concentration were measured in situ in the holothurians Pearsonothuria graeffei and Holothuria edulis in the Agan-an Marine Reserve, Sibulan, Philippines (9°20′30″N, 123°18′31″E). Measurements were made both day and night for both species during April–July 2005. P. graeffei had significantly higher movement rate during the day than at night (1.14 and 0.27 m h−1, respectively; three-way ANOVA, P < 0.05) while H. edulis had higher movement rate at night compared to the day (0.83 and 0.07 m h−1, respectively), spending the daylight hours sheltering under coral. More than 80% of H. edulis had movement rate of zero during the day. Oxygen consumption of P. graeffei was significantly higher during the day than at night (1.61 and 0.83 μmol O2 g−1 h−1, respectively; two-way ANCOVA, P < 0.05), but the reduction at night was not as pronounced as the reduction in movement. H. edulis had a 75% reduction in oxygen consumption during the day compared to night (0.51 and 1.96 μmol O2 g−1 h−1, respectively), matching this species’ reduced movement rates during the day. Ammonium concentration in water withdrawn from the respiratory trees of P. graeffei during the day (12.0 μM) was three times higher than in respiratory tree water sampled at night (4.3 μM) and 15 times higher than ambient seawater (0.8 μM; three-way ANOVA, P < 0.05). Ammonium concentration in the respiratory tree water of H. edulis was six times higher at night (14.6 μM) than during the day (2.2 μM) and 16 times higher than that of ambient seawater (0.9 μM). Even though H. edulis and P. graeffei are found within the same coral reef environment, they may affect different substrates and reef organisms due to their different habitats and distinct but opposite diel cycles.  相似文献   

11.
Vertical distributions of the abundant larger copepods, both adults and late copepodites, were observed day and night in the upper 500 m of the North Pacific central gyre in early November, 1971. Densities of the copepodites usually equalled or exceeded those of the adults. Copepod species with maximum densities at or above 100 m (Calanus spp., Nannocalanus minor f. major, Undinula darwini, and Euchaeta rimana) usually had no ontogenetic or diel migration. Neocalanus spp. and Haloptilus longicornis exhibited ontogenetic but not diel migrations. Nannocalanus minor f. minor, Aetideus acutus, Euchaeta media, Scolecithrix spp. and Pleuromamma spp., had both ontogenetic and diel migrations. Adults and copepodites of E. media and Pleuromamma spp. usually had their night modes at the same depth, but the daytime modes were at progressively deeper depths for progressively older stages. Daytime modes for adults and copepodites of A. acutus and Scolecithrix bradyi were at the same depth, but the nighttime modes were at shallower depths for progressively older stages. Night modes of all these migrators were usually in the mixed layer (75 m), where primary production rates were maximal. Congeners usually had similar migratory behavior, but competition probably has been a significant determinant of vertical distribution, since congeners, particularly sibling species, consistently had different depths of maximum occurrence during both day and night.  相似文献   

12.
B. J. Hill 《Marine Biology》1978,47(2):135-141
Ultrasonic transmitters were used to track the movements of the crab Scylla serrata (Forskal) over 24 h periods in the Kowie estuary, South Africa. Laboratory experiments using infra-red time-lapse photography to record activity indicated that the transmitters did not affect duration of emergence, amount of movement or feeding. In the estuary, S. serrata was active on average for 13 h. out of 24 h, most activity was at night. The distance moved per night by continuously tracked crabs averaged 461 m, but ranged between 219 and 910 m. Most movement was slow, modal speed was 10 to 19 m h-1. Slow movements were independent of direction of current and are assumed to be related to use of contact chemoreception for location of prey. About one-seventh of movements were faster than 70 m h-1; these were most frequently against the current and may be related to olfactory location of food. The crabs did not occupy a distinct territory, but tended to remain in the same general area although they were capable of moving at least 800 m along the length of the estuary at night.  相似文献   

13.
In situ diel feeding behavior of neritic copepods was investigated using the gut fluorescence method, during spring and fall bloom periods in Akkeshi Bay, on the eastern coast of Hokkaido, Japan. Acartia omorii and Paracalanus sp. were the dominant species during the fall, and Pseudocalanus spp. and A. longiremis during the spring. During both bloom periods, diel rhythms were always observed for the gut pigment contents of these dominant copepods, although there were interspecific differences in the pattern. The maximum gut pigment content was always observed during the night and the minimum during the day. For all species, except Paracalanus sp., the average gut pigment content during the night was significantly higher (p<0.05) than during daytime by factors of between 1.5 and 2.7. There were no significant differences between the gut evacuation rate constants determined during the day and the night, and initial gut pigment content had no effect on the value of gut evacuation rate constants. The instantaneous ingestion rates of individual copepods calculated from gut pigment and the mean value of gut evacuation rate constants followed the same diel rhythms as gut pigment contents. Copepod daily ingestion rates were higher than the daily requirements for respiration during both bloom periods. Estimated daily ration was 40 to 91% of body carbon during the fall bloom, and 17 to 28% during the spring bloom. The higher daily rations during fall were probably due to the difference in in situ temperature (ca. 14°C).  相似文献   

14.
Most presettlement reef fish settled at night at One Tree Island, Great Barrier Reef. Fish were sampled day and night using channel nets located on the reef crest, and a plankton-mesh purse-seine net in the lagoon (1992–1994). Catches of fish at night were generally tens to hundreds of times greater than those taken during the day. Preflexion fish, as well as postflexion and pelagic juveniles, were taken in greater numbers at night. Preflexion forms were a combination of those that had hatched from demersal eggs and later stages that had been transported over the reef crest. Highest numbers of postflexion and pelagic juvenile forms of Apogonidae, Blenniidae, Gobiesocidae, Gobiidae, Labridae, Lutjanidae, Mugiloididae, Mullidae, Pomacentridae, Scaridae, Serranidae and Tripterygiidae were found at night. Observations, while SCUBA diving, and purse-seine samples in the lagoon indicated that the only resident larvae were of the genera Spratelloides and Hypoatherina; most of the fishes caught in nets, therefore, were immigrants. Patch reefs, sampled for new settlers early in the morning and late in the day, indicated that the majority of apogonids (Apogon doederleini, >95%) settled at night. Although greater numbers of pomacentrids were found in morning counts (e.g. Pomacentrus wardi), if data were converted to an hourly rate, many pomacentrids showed a similar hourly rate of settlement day and night. Depth-stratified sampling in waters near One Tree Island (to 20 m) indicated that some taxa rise to the surface at night. This behaviour, perhaps combined with avoidance of diurnal predators may explain on-reef movement of potential settlers soon after dark. Studies on settlement cues, therefore, need to focus on night-related phenomena. Received: 3 March 2000 / Accepted: 20 June 2000  相似文献   

15.
The study of location specification in recruitment communication by bees has focused on two dimensions: direction and distance from the nest. Yet the third dimension, height above ground, may be significant in the tall and dense forest habitats of stingless bees. Foragers of the stingless bee Scaptotrigona postica recruit to a specific three-dimensional location by laying a scent trail. Stingless bees in the genus Melipona are thought to have a more sophisticated recruitment system that communicates distance through sounds inside the nest and direction through pointing zig-zag flights outside the nest. However, prior research on Melipona has not examined height communication or even established that foragers can recruit newcomers to a specific location. We used identical paired feeders to investigate recruitment to food in M panamica on Barro Colorado Island, Panama. We trained foragers from an observation hive to one feeder and monitored both feeders for the subsequent arrival of newcomers. We changed the relative positions of the feeders to test for correct direction, distance, and canopy-level communication. A 40-m canopy tower located inside the forest enabled us to examine canopy-level communication. We found that M. panamica foragers can recruit to a specific (1) direction, (2) distance, and (3) canopy level. To test the possibility that foragers accomplish this by means of a scent trail, we placed the colony on one shore of a small cove and trained bees over 116 m of open water to a feeder located on the opposite shore. We also placed a second feeder on this shore, equidistant from the colony but 20 m from the first feeder. Significantly more newcomers consistently arrived at the feeder visited by the foragers. Thus foragers evidently do not need a scent trail to communicate direction. Inside the nest, a forager produces pulsed sounds while visibly vibrating her wings after returning from a good food source. She is attended by other bees who cluster and hold their antennae around her, following her as she rapidly spins clockwise and counterclockwise. Locational information may be encoded in this behavior. However, foragers may also directly lead newcomers to the food source. Further experiments are planned to test for such piloting and other communication mechanisms.  相似文献   

16.
Feeding behavior of the deposit feeding polychaete Cistenides (Pectinaria) gouldii was examined to determine factors affecting particle selection and feeding rate. Worms were found to select large particles preferentially and particle size selection increased with worm size. Particle selection behavior was unaffected by changes in sediment bacterial abundance. Feeding rates were affected by sediment size, bacterial density and worm size. Generally feeding rates increased in sediment containing more food, although the response was worm size specific. When viewed in a theoretical construct these results were inconsistent with predictions of deposit feeder optimal foraging models. Alternative explanations, such as morphological constraints placed upon the polychaete, may explain C. gouldii feeding behavior.  相似文献   

17.
J. E. Cartes 《Marine Biology》1993,117(3):459-468
The composition of the diet and daily cicle of predatory activity of pasiphaeid shrimps in the Northwestern Mediterranean were established; special attention was focussed on nocturnal feeding habits close to the bottom. Daily activity in both species was studied in two continuous 24-h sampling periods. Samples were obtained using bottom trawls between 1988 and 1990. Both species fed on benthic prey items at night. The nocturnal diet of Pasiphaea multidentata consisted of gammarid amphipods, isopods (Cirolana borealis) and macruran decapods (Calocaris macandreae). Nocturnal feeding activity was carried out only by large specimens (cephalothorax length >28 mm), which stayed close to the bottom during the nighttime. In contrast, the specimens collected during the daytime exhibited highly digested remains of pelagic prey (hyperiids, fishes, euphausiids, chaetognaths) ingested as a result of predatory higher activity in the water column the night before. The feeding strategy of P. sivado was parallel to that of P. multidentata. At night large specimens were located near the bottom and fed on suprabenthic gammarid amphipods. This nocturnal feeding activity by both these mesopelagic pasiphaeid species furnishes evidence of energy transfer from the benthos to the planktonic system in bathyal communities. Changes were observed in the diet of P. multidentata with depth. Crustaceans made up a larger share of the diet of P. multidentata on the lower slope than on the upper middle slope, probably because of changes undergone by bathyal communities with increasing depth. The feeding rate was higher in the submarine canyons, where the diet is also more specialised. Dietary overlap between the two pasiphaeids was very low, due to the different size range of prey exploited.  相似文献   

18.
Reproductive cycles of Afrocucumis africana (Dendrochirotida), Actinopyga echinites, Holothuria leucospilota, H. cinerascens, H. difficilis (Aspidochirotida), Synaptamaculata, Opheodesoma grisea, Patinapta taiwaniensis and Polycheira rufescens (Apodida), representing three orders of intertidal holothurians in southern Taiwan, were determined by gonad index and histological examination from March 1990 through September 1991. All nine species of holothurians have annual spawning periods lasting 2 to 4 mo in spring or summer. The early spawning of H. cinerascens and P. rufescens (suspension feeders) suggests that their feeding mode is related to food resources and may influence the reproductive period. In the direct-developing dendrochirotid (suspension feeder), gonad development occurs in cool months, and gametes are released at the beginning of warm months. In indirect-developing aspidochirotid and apodid (deposit feeder), gamete release occurs in late spring or summer and appears to be correlated with summer phytoplankton growth. The holothurians in the present study display spawning periodicity and duration similar to those of temperate species. Four species of holothurians lengthened spawning season with decreased latitude.  相似文献   

19.
The emergence patterns of both green (Chelonia mydas) and loggerhead (Caretta caretta) turtle hatchlings were observed in great detail over three seasons at Alagadi beach, northern Cyprus. In total, 38 green turtle and 50 loggerhead turtle nests were monitored, accounting for the emergence of 2,807 and 2,259 hatchlings, respectively. We quantified these emergences into 397 green turtle and 302 loggerhead turtle emergence groups. Overall, 85.0% of green turtle and 79.5% of loggerhead turtle groups emerged at night; these accounted for 85.5 and 90.8% of hatchlings, respectively. The remaining emergences were dispersed throughout the day for green turtle nests but confined to the morning in loggerhead turtle nests. Hatchling emergence from individual nests occurred over periods of between 1 and 7 nights, with most hatchlings typically emerging on the first night. Group sizes of green turtles emerging during the day were significantly smaller than those emerging at night. Hatchlings of both species that emerged from nests during the day had longer emergence durations than those that emerged from nests at night only.Communicated by R.J. Thompson, St. Johns  相似文献   

20.
The extent of the nocturnal vertical migration of Mysis mixta Lilljeborg varied between early July and late October (of 1985 and 1986) in a coastal area of the Baltic Sea. Migration was more restricted in early July and late October. Seasonal changes in surface light levels and transparency were sufficient to explain the observed differences. Mysids avoided light levels above 10-4 lux throughout the study period. Smaller juveniles migrated higher up than larger juveniles and adults. A two-layered distribution with part of the population close to the bottom was observed at night. Zooplankton were more abundant in water layers above the main concentration of mysids. M. mixta fed on phytoplankton, detritus, copepods, cladocerans, rotifers and tintinnids. Diel changes in gut fluorescence indicated a higher intake of phytoplankton at night, but levels were low compared to primarily herbivorous zooplankton. Comparisons of stomach contents of mysids caught at the bottom in the evening and in the water column at night showed a higher ingestion of zooplankton at night and of detritus during the day. Mysids caught at the bottom at night had an intermediate diet. Copepods and cladocerans constituted between 90 and 100% of ingested material by weight in all mysid groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号