首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
Developing industrially moldable catalysts with harmonized redox performance and acidity is of great significance for the efficient disposal of chlorinated volatile organic compounds(CVOCs) in actual exhaust gasses. Here, commercial TiO2, typically used for molding catalysts, was chosen as the carrier to fabricate a series of Ce0.02Mn0–0.24TiOx materials with different Mn doping ratios and employed for chlorobenzene(CB) destruction. The introduction of...  相似文献   

2.
To obtain a cost-effective adsorbent for the removal of arsenic in water,a novel nanostructured Fe–Co based metal organic framework(MOF-74)adsorbent was successfully prepared via a simple solvothermal method.The adsorption experiments showed that the optimal molar ratio of Fe/Co in the adsorbent was 2:1.The Fe_2Co_1MOF-74 was characterized by various techniques and the results showed that the nanoparticle diameter ranged from60 to 80 nm and the specific surface area was 147.82 m~2/g.The isotherm and kinetic parameters of arsenic removal on Fe_2Co_1MOF-74 were well-fitted by the Langmuir and pseudo-second-order models.The maximum adsorption capacities toward As(III)and As(V)were 266.52 and 292.29 mg/g,respectively.The presence of sulfate,carbonate and humic acid had no obvious effect on arsenic adsorption.However,coexisting phosphate significantly hindered the removal of arsenic,especially at high concentrations(10 mmol/L).Electrostatic interaction and hydroxyl and metal–oxygen groups played important roles in the adsorption of arsenic.Furthermore,the prepared adsorbent had stable adsorption ability after regeneration and when used in a real-water matrix.The excellent adsorption performance of Fe_2Co_1MOF-74 material makes it a potentially promising adsorbent for the removal of arsenic.  相似文献   

3.
To provide data to test mathematical models developed to predict human exposure to Volatile Organic Compounds (VOCs) volatilizing from showers, an analytical method was developed to analyze the simultaneous volatilization of VOCs in the water and humid air of showers. Five VOCs with a wide range of Henry's law constants were used. Experiments, conducted in a full-scale shower, were performed at initial water concentrations nearing tap water VOC concentrations (a few μgλ−1). VOCs in water and humid air samples were concentrated by purge-and-trap, thermally desorbed from a Tenax trap and analyzed with a gas chromatograph-electron capture detector. The fraction of the VOCs volatilized from showers at various water temperatures and flow rates were calculated. Mass-balane equations indicated the presence of sinks of VOCs in the experimental shower other than those due to the airflow. An experimental method to measure the residence time of the water in the shower is presented.  相似文献   

4.
Volatile organic compounds (VOCs) are crucial to control air pollution in major Chinese cities since VOCs are the dominant factor influencing ambient ozone level, and also an important precursor of secondary organic aerosols. Vehicular evaporative emissions have become a major and growing source of VOC emissions in China. This study consists of lab tests, technology evaluation, emissions modeling, policy projections and cost-benefit analysis to draw a roadmap for China for controlling vehicular evaporative emissions. The analysis suggests that evaporative VOC emissions from China's light-duty gasoline vehicles were approximately 185,000 ton in 2010 and would peak at 1,200,000 ton in 2040 without control. The current control strategy implemented in China, as shown in business as usual (BAU) scenario, will barely reduce the long-term growth in emissions. Even if Stage II gasoline station vapor control policies were extended national wide (BAU + extended Stage II), there would still be over 400,000 ton fuel loss in 2050. In contrast, the implementation of on-board refueling vapor recovery (ORVR) on new cars could reduce 97.5% of evaporative VOCs by 2050 (BAU + ORVR/BAU + delayed ORVR). According to the results, a combined Stage II and ORVR program is a comprehensive solution that provides both short-term and long-term benefits. The net cost to achieve the optimal total evaporative VOC control is approximately 62 billion CNY in 2025 and 149 billion CNY in 2050.  相似文献   

5.
In recent years,many cities have taken measures to reduce volatile organic compounds(VOCs),an important precursor of ozone (O3),to alleviate O3 pollution in China.116 VOC species were measured by online and offline methods in the urban area of Jiaozuo from May to October in 2021 to analyze the compositional characteristics.VOC sources were analyzed by a positive matrix factorization (PMF) model,and the sensitivity of ozone generation was determined by ozone isopleth plottin...  相似文献   

6.
IntroductionSignificantwaterqualitymanagementformitigationofenvironmentalpollutioncausedbyhazardouschemicalsisstillamatterofstringentenvironmentalconsiderationinJapan .Subsequently,regularon goingmonitoringareimplemented ,especiallyforsyntheticchemicals…  相似文献   

7.
In order to study the influences of functionalized groups onto the adsorption of tetracycline (TC), we prepared a series of amino and amino–Fe3 + complex mesoporous silica adsorbents with diverse content of amino and Fe3 + groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction, Fourier transform infrared spectrometer and N2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe3 + groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe3 + increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe3 + content increased from 3.93% to 8.26%, the Qmax of the adsorbents increased from 102 to 188 mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications.  相似文献   

8.
In order to study the influences of functionalized groups onto the adsorption of tetracycline,we prepared a series of amino and amino–Fe~(3+)complex mesoporous silica adsorbents with diverse content of amino and Fe~(3+)groups(named N,N-SBA15 and Fe-N,N-SBA15).The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction(XRD),Fourier transform infrared spectrometer(FTIR)and N_2adsorption/desorption isotherms.Furthermore,the effects of functionalized groups on the removal of TC were investigated.The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe~(3+)groups.The functionalized amino groups decreased the adsorption capacity while the coordinated Fe~(3+)increased the adsorption capacity.The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly.The adsorption isotherms fitted the Langmuir model well and with the Fe~(3+)content increased from 3.93%to 8.26%,the Q_(max)of the adsorbents increased from 102 to 188 mmol/kg.The solution p H affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly.The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes,while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes.This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications.  相似文献   

9.
Cadmium(Cd) and arsenic(As) are two of the most toxic elements. However, the chemical behaviors of these two elements are different, making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal. To solve this problem, we synthesized HA/Fe-Mn oxides-loaded biochar(HFMB), a novel ternary material,to perform this task, wherein scanning electron microscopy(SEM) combined with EDS(SEMEDS) was used to characterize its morphological and physicochemical properties. The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar(11.06 mg/g, 0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively). The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions. X-ray photoelectron spectroscopy(XPS)and Fourier-transform infrared spectroscopy(FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB, while ligand exchange was the adsorption mechanism that bound As(Ⅴ).  相似文献   

10.
Chitosan–metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan–metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan–Fe( Ⅲ) complex prepared by sulfate salts exhibited the best adsorption efficiency(100%) for various dyes in very short time duration(10 min), and its maximum adsorption capacity achieved 349.22 mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan–metal complex. SO_4~(2-) ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process.Additionally, the p H sensitivity and the sensitivity of ionic environment for chitosan–metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan–metal complex can help not only in optimizing its use but also in designing new chitosan–metal based complexes.  相似文献   

11.
Volatile organic compounds(VOCs) as precursors of ozone and secondary organic aerosols can cause adverse effects on the environment and human health.However,knowledge of the VOC vertical profile in the lower troposphere of major Chinese cities is poorly understood.In this study,tethered balloon flights were conducted over the juncture of BeijingTianjin-Hebei in China during the winter of 2016.Thirty-six vertical air samples were collected on selected heavy and light pollution days at altitudes o...  相似文献   

12.
Rate coefficients for the reaction of NO3 radicals with 6 unsaturated volatile organic compounds (VOCs) in a 7300 L simulation chamber at ambient temperature and pressure have been determined by the relative rate method. The resulting rate coefficients were determined for isoprene, 2-carene, 3-carene, methyl vinyl ketone (MVK), methacrolein (MACR) and crotonaldehyde (CA), as (6.6 ± 0.8) × 10?13, (1.8 ± 0.6) × 10?11, (8.7 ± 0.5) × 10?12, (1.24 ± 1.04) × 10?16, (3.3 ± 0.9) × 10?15 and (5.7 ± 1.2) × 10?15 cm3/(molecule?sec), respectively. The experiments indicate that NO3 radical reactions with all the studied unsaturated VOCs proceed through addition to the olefinic bond, however, it indicates that the introduction of a carbonyl group into unsaturated VOCs can deactivate the neighboring olefinic bond towards reaction with the NO3 radical, which is to be expected since the presence of these electron-withdrawing substituents will reduce the electron density in the π orbitals of the alkenes, and will therefore reduce the rate coefficient of these electrophilic addition reactions. In addition, we investigated the product formation from the reactions of 2-carene and 3-carene with the NO3 radical. Qualitative identification of an epoxide (C10H16OH+), caronaldehyde (C10H16O2H+) and nitrooxy-ketone (C10H16O4NH+) was achieved using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and a reaction mechanism is proposed.  相似文献   

13.
Volatile organic compounds (VOCs) with high toxicity and carcinogenicity are emitted from kinds of industries, which endanger human health and the environment. Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency. In recent years, activated carbons, zeolites, and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity. However, the hydrophilic nature and low desorption rate of those materials limit their commercial application. Furthermore, the adsorption capacities of VOCs still need to be improved. Porous organic polymers (POPs) with extremely high porosity, structural diversity, and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption. This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs. Moreover, the mechanism of competitive adsorption between water and VOCs on the POPs was discussed. Finally, a concise outlook for utilizing POPs for VOCs adsorption was discussed, noting areas in which further work is needed to develop the next-generation POPs for practical applications.  相似文献   

14.
Volatile organic compounds(VOCs) are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity, high volatility, and poor degradability. It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations. In China, clear directions and requirements for reduction of VOCs have been given in the “national plan on environmental improvement for the 13th Five-Year Plan period”. Therefore, the de...  相似文献   

15.
Trace analysis of volatile organic compounds (VOCs) during wildfires is imperative for environmental and health risk assessment. The use of gas sampling devices mounted on unmanned aerial vehicles (UAVs) to chemically sample air during wildfires is of great interest because these devices move freely about their environment, allowing for more representative air samples and the ability to sample areas dangerous or unreachable by humans. This work presents chemical data from air samples obtained in Davis, CA during the most destructive wildfire in California's history - the 2018 Camp Fire – as well as the deployment of our sampling device during a controlled experimental fire while fixed to a UAV. The sampling mechanism was an in-house manufactured micro-gas preconcentrator (µPC) embedded onto a compact battery-operated sampler that was returned to the laboratory for chemical analysis. Compounds commonly observed in wildfires were detected during the Camp Fire using gas chromatography mass spectrometry (GC–MS), including BTEX (benzene, toluene, ethylbenzene, m+p-xylene, and o-xylene), benzaldehyde, 1,4-dichlorobenzene, naphthalene, 1,2,3-trimethylbenzene and 1-ethyl-3-methylbenzene. Concentrations of BTEX were calculated and we observed that benzene and toluene were highest with average concentrations of 4.7 and 15.1 µg/m3, respectively. Numerous fire-related compounds including BTEX and aldehydes such as octanal and nonanal were detected upon experimental fire ignition, even at a much smaller sampling time compared to samples taken during the Camp Fire. Analysis of the air samples taken both stationary during the Camp Fire and mobile during an experimental fire show the successful operation of our sampler in a fire environment.  相似文献   

16.
Volatile organic compounds (VOCs), important precursors of ozone (O3) and fine particulate matter (PM2.5), are the key to curb the momentum of O3 growth and further reducing PM2.5 in China. Container manufacturing industry is one of the major VOC emitters, and more than 96% containers of the world are produced in China, with the annual usage of coatings of over 200,000 tons in recent years. This is the first research on the emission characteristics of VOCs in Chinese container manufacturing industry, including concentration and ozone formation potential (OFP) of each species. The result shows that the largest amounts of VOCs are emitted during the pretreatment process, followed by the paint mixing process and primer painting process, and finally other sprays process. The average VOC concentrations in the workshops, the exhausts before treatment and the exhausts after treatment are ranging from 82.67–797.46 , 170–1,812.65 , 66.20–349.63 mg/m3, respectively. Benzenes, alcohols and ethers are main species, which contribute more than 90% OFP together. Based on the emission characteristics of VOCs and the technical feasibility, it is recommended to set the emission limit in standard of benzene to 1.0 mg/m3, toluene to 10 mg/m3, xylene to 20 mg/m3, benzenes to 40 mg/m3, alcohols and ethers to 50 mg/m3, and VOCs to 100 mg/m3. The study reports the industry emission characteristics and discusses the standard limits, which is a powerful support to promote VOCs emission reduction, and to promote the coordinated control of PM2.5 and O3 pollution.  相似文献   

17.
Volatile organic compounds (VOCs) have attracted much attention for decades as they are the precursors of photochemical smog and are harmful to the environment and human health. Vacuum ultraviolet (VUV) photodegradation is a simple and effective method to decompose VOCs (ranging from tens to hundreds of ppmV) without additional oxidants or catalysts in the air at atmospheric pressure. In this paper, we review the research progress of VOCs removal via VUV photodegradation. The fundamentals are outlined and the key operation factors for VOCs degradation, such as humidity, oxygen content, VOCs initial concentration, light intensity, and flow rate, are discussed. VUV photodegradation of VOCs mixture is elucidated. The application of VUV photodegradation in combination with ozone-assisted catalytic oxidation (OZCO) and photocatalytic oxidation (PCO) systems, and as the pre-treatment technique for biological purification are illustrated. Based on the summary, we propose the challenges of VUV photodegradation and perspectives for its future development.  相似文献   

18.
Based on one-year observation, the concentration, sources, and potential source areas of volatile organic compounds (VOCs) were comprehensively analyzed to investigate the pollution characteristics of ambient VOCs in Haikou, China. The results showed that the annual average concentration of total VOCs (TVOCs) was 11.4 ppbV, and the composition was dominated by alkanes (8.2 ppbV, 71.4%) and alkenes (1.3 ppbV, 20.5%). The diurnal variation in the concentration of dominant VOC species showed a distinct bimodal distribution with peaks in the morning and evening. The greatest contribution to ozone formation potential (OFP) was made by alkenes (51.6%), followed by alkanes (27.2%). The concentrations of VOCs and nitrogen dioxide (NO2) in spring and summer were low, and it was difficult to generate high ozone (O3) concentrations through photochemical reactions. The significant increase in O3 concentrations in autumn and winter was mainly related to the transmission of pollutants from the northeast. Traffic sources (40.1%), industrial sources (19.4%), combustion sources (18.6%), solvent usage sources (15.5%) and plant sources (6.4%) were identified as major sources of VOCs through the positive matrix factorization (PMF) model. The southeastern coastal areas of China were identified as major potential source areas of VOCs through the potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models. Overall, the concentration of ambient VOCs in Haikou was strongly influenced by traffic sources and long-distance transport, and the control of VOCs emitted from vehicles should be strengthened to reduce the active species of ambient VOCs in Haikou, thereby reducing the generation of O3.  相似文献   

19.
Biogenic volatile organic compounds (BVOCs) are widely involved in a variety of atmospheric chemical processes due to their high reactivity and species diversity. To date, however, research on BVOCs in agroecosystems, particularly fruit trees, remains scarce despite their large cultivation area and economic interest. BVOC emissions from different organs (leaf or fruit) of apple and peach trees were investigated throughout the stages of fruit development (FS, fruit swelling; FC, fruit coloration; FM, fruit maturity; and FP, fruit postharvest) using a proton-transfer-reaction mass spectrometer. Results indicated that methanol was the most abundant compound emitted by the leaf (apple tree leaf 492.5 ± 47.9 ng/(g·hr), peach tree leaf 938.8 ±  154.5 ng/(g·hr)), followed by acetic acid and green leaf volatiles. Beside the above three compounds, acetaldehyde had an important contribution to the emissions from the fruit. Overall, the total BVOCs (sum of eight compounds studied in this paper) emitted by both leaf and fruit gradually decreased along the fruit development, although the effect was significant only for the leaf. The leaf (2020.8 ±  258.8 ng/(g·hr)) was a stronger BVOC emitter than the fruit (146.0 ± 45.7 ng/(g·hr)) (P = 0.006), and there were no significant differences in total BVOC emission rates between apple and peach trees. These findings contribute to our understanding on BVOC emissions from different plant organs and provide important insights into the variation of BVOC emissions across different fruit developmental stages.  相似文献   

20.
Volatile organic compounds (VOCs) are major precursors for ozone and secondary organic aerosol (SOA), both of which greatly harm human health and significantly affect the Earth''s climate. We simultaneously estimated ozone and SOA formation from anthropogenic VOCs emissions in China by employing photochemical ozone creation potential (POCP) values and SOA yields. We gave special attention to large molecular species and adopted the SOA yield curves from latest smog chamber experiments. The estimation shows that alkylbenzenes are greatest contributors to both ozone and SOA formation (36.0% and 51.6%, respectively), while toluene and xylenes are largest contributing individual VOCs. Industry solvent use, industry process and domestic combustion are three sectors with the largest contributions to both ozone (24.7%, 23.0% and 17.8%, respectively) and SOA (22.9%, 34.6% and 19.6%, respectively) formation. In terms of the formation potential per unit VOCs emission, ozone is sensitive to open biomass burning, transportation, and domestic solvent use, and SOA is sensitive to industry process, domestic solvent use, and domestic combustion. Biomass stoves, paint application in industrial protection and buildings, adhesives application are key individual sources to ozone and SOA formation, whether measured by total contribution or contribution per unit VOCs emission. The results imply that current VOCs control policies should be extended to cover most important industrial sources, and the control measures for biomass stoves should be tightened. Finally, discrepant VOCs control policies should be implemented in different regions based on their ozone/aerosol concentration levels and dominant emission sources for ozone and SOA formation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号