首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 953 毫秒
1.
针对4种不同的实际污水短程生物脱氮系统(SBR大型中试反应器、UASB-A/O小型反应器、A/O中试反应器和SBR小型反应器),采用Fish、PCR-DGGE和PCR-Cloning-Sequencing分子生物学方法对系统中硝化菌群AOB和NOB进行定性与定量化分析.Fish结果表明,在4种短程脱氮系统中,AOB相比于NOB已成为明显的优势菌群,占总菌群的3%~12%;在SBR中试和小试反应器中没有检测出NOB;A/O中试反应器中存在极少量的Nitrospira(<0.2%),而UASB-A/O小型反应器中存在极少量的Nitrobacteria(<0.2%).PCR-DGGE结果表明SBR中试、A/O和UASB-A/O 3种短程脱氮系统中的AOB均以Nitrosomonas-like为主.SBR大型中试反应器中污泥样品的PCR-Cloning-Sequencing结果表明,所有的克隆相似于Nitrosomonas,其中60%以上的克隆相似于Nitrosomonas europaea.  相似文献   

2.
城市污水中硝化菌群落结构与性能分析   总被引:6,自引:6,他引:0  
对西安市第二和第三污水处理厂进水中硝化菌群落结构与性能进行调查分析.荧光原位杂交结果发现,进水中氨氧化菌(AOB)优势菌为Nitrosomonas europaea/Nitrosococcus mobilis lineage;亚硝酸盐氧化菌(NOB)的优势菌均为Nitrospira,次优势菌为Nitrobacter,且与Nitrococcus、Nitrospina并存.二污及三污进水中硝化菌个数占总细菌数(AOB+NOB)/EUB的平均个数百分比分别为(5.35±2.1)%和(6.0±2.8)%;在曝气2~16h后,活性基本恢复,最大氨氧化速率分别为(0.32±0.12)mg·(L·h)-1和(0.43±0.17)mg·(L·h)-1,亚硝酸盐氧化速率为(0.71±0.18)mg·(L·h)-1和(0.58±0.27)mg·(L·h)-1.因此,城市污水中含有活性硝化菌,对活性污泥系统有自然的连续接种作用,根据进水及活性污泥中硝化活性可以估算出城市污水中AOB与NOB对活性污泥的连续接种强度分别为0.08~0.09 g·(g·d)-1和0.11~0.24 g·(g·d)-1.  相似文献   

3.
采用Miseq高通量测序技术研究氨氮进水负荷对ABR-MBR组合工艺MBR池中微生物种群的丰度及优势菌群的影响.结果表明,温度为28~32℃、pH值为7.1~7.4、DO为0.5~1mg/L并逐步提高氨氮进水负荷的条件下,可以使氨氧化菌(AOB)大量富集,并抑制亚硝酸盐氧化菌(NOB)的活性,从而实现短程硝化的稳定运行.在氨氮进水负荷为0.94kg/(m3·d)时,平均亚硝酸盐积累率达到60%以上,氨氮去除率稳定在90%.在系统运行过程中,变形菌门是系统中的优势菌门,Nitrosomonas的相对丰度由4.97%升至22.56%,硝化螺菌属的相对丰度为0.06%~2.12%.因此,ABR-MBR组合工艺短程硝化过程中亚硝酸盐积累率与AOB的活性、相对丰度密切相关,即AOB的大量富集可以有效实现短程硝化,而NOB的小幅度增长不会影响短程硝化的实现.系统中微生物种群的多样性和功能微生物的结构稳定性保证了ABR-MBR工艺具有稳定和较好的处理效果.  相似文献   

4.
污水处理工艺对氨氧化菌及细菌群落的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用针对氨氧化菌(AOB)功能基因氨单加氧酶(amoA)的末端限制性片段长度多态性技术(T-RFLP)、克隆测序等方法,研究了北京市2个污水处理厂的4个污水处理系统中AOB的群落结构,同时采用针对16S rRNA基因的T-RFLP技术分析了总细菌的群落结构.T-RFLP指纹图谱分析表明,4个污水处理系统中AOB的优势限制性片段(T-RF)均为291bp和354bp,细菌的优势T-RF为115,117,166,455,465, 468,471,482,800,893bp等.说明污水处理工艺对系统中AOB及细菌的群落结构影响很小.对功能基因amoA的系统发育分析表明,4个污水处理系统中优势AOB均属于Nitrosomonas europaea cluster和Nitrosomonas oligotropha culster.  相似文献   

5.
氨氧化反应是硝化作用的关键步骤,参与这一反应的微生物是氨氧化细菌(AOB)和氨氧化古菌(AOA).对新疆艾比湖湿地盐节木根际和非根际土壤的氨氧化微生物进行群落结构和丰度分析,并探究其与土壤理化因子的相关性.同时,以氨单加氧酶基因(amo A)为分子标记,构建克隆文库和测序并与q-PCR法结合研究AOA、AOB的群落结构和丰度,利用Pearson相关分析法探究其与环境因子的相关性.结果表明,根际土壤中AOB的多样性高于AOA,amo A基因序列多属于土壤/水体沉积物分支,AOB克隆文库中的所有序列均属于亚硝化单胞菌属(Nitrosomonas).根际土壤中AOA amo A和AOB amo A的数量分别为2.09×104和2.91×105copies·g~(-1),AOB/AOA的比值为13.9;非根际土壤中AOA amo A和AOB amo A的数量分别为3.85×104和4.76×105copies·g~(-1),AOB/AOA的比值为12.36.相关分析显示,氨氧化微生物的群落结构和丰度与电导率(EC)、有机质(OM)、速效氮(AN)、氨氮(NH_4~+-N)和总氮(TN)等环境因子显著相关.这些结果表明,根际土壤中AOB的群落多样性高于AOA,根际和非根际土壤中AOB的丰度均高于AOA,说明在艾比湖湿地AOB是氨氧化微生物的优势种群,且EC、OM、AN、NH_4~+-N和TN可能会影响氨氧化微生物的群落结构和丰度.  相似文献   

6.
为了探究采用游离亚硝酸(FNA)实现连续流A~2O工艺短程硝化的可行性,考察了不同浓度的FNA对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的活性影响,研究了通过投加FNA对活性污泥进行预处理后A~2O反应器的运行效果和微生物菌群结构的变化.结果表明,当FNA浓度为1.12mg HNO_2-N/L时,经过3h的缺氧处理,AOB和NOB的活性分别下降了60%和86%,对NOB有一定的选择性抑菌效应,而投加FNA并对活性污泥进行缺氧处理后的A~2O反应器平均出水NH_4~+-N、NO_2~--N和NO_3~--N分别为12.76、1.56和7.82mg/L,亚硝酸盐积累率(NAR)仅为20%左右,并没有实现预期的短程硝化.高通量和定量PCR的结果也表明,投加FNA并进行缺氧处理后活性污泥中AOB的种群丰度由2.05×108copies/g VSS下降到了3.96×105copies/g VSS,导致系统的氨氧化过程受到了较大影响.最终Nitrobacter和Nitrospira丰度降低,Nitrotoga占总序列数的1.66%,是造成系统无法通过FNA预处理实现连续流A~2O工艺短程硝化的原因.  相似文献   

7.
以巢湖市某污水处理厂实际污水为处理对象,基于节能降耗的需求开展A2O工艺中试研究.研究结果表明:当溶解氧从2mg/L降至0.5mg/L时,COD和氨氮的去除率分别为80%和90%,去除性能并未受到影响,没有出现亚硝酸积累,而TN的去除率有较大幅度的提升,从15%提升至44%.低溶解氧条件下,温度降低主要对TN去除率产生影响,从夏季的44%下降至冬季的29%,而氨氮的去除率仍维持在90%以上.由于进水碳源不足,出水主要以硝酸盐氮为主,低温脱氮率仅为29%.长期低氧条件下运行,AOB和NOB的优势种属为Nitrosomonadaceae和Nitrospira,相对丰度分别为2.33%和6.40%.系统NOB在数量和动力学性能上均优于AOB,同时发现存在Denitratisoma好氧反硝化菌,其相对丰度为1.59%.研究结果为低氧条件下实现城市污水脱氮提供了理论和实践依据.  相似文献   

8.
于濛雨  刘毅  田玉斌  石欢  徐富  杨宏 《环境科学》2017,38(7):2925-2930
为了提高包埋氨氧化细菌短程硝化的效率,富集培养氨氧化细菌(AOB)并固定化.富集培养阶段采用连续式运行方式,以游离氨(FA)为抑制亚硝酸盐氧化菌(NOB)生长的手段,并通过定时排泥方法使NOB逐渐从系统中淘洗出去.富集培养结束后以聚乙烯醇(PVA)为包埋材料,对筛选培养的氨氧化细菌进行固定化,反应器包埋填充率为8%.采用连续式运行方式,通过逐步增加氨氮负荷的方法提高氨氧化速率.最终在富集培养系统中实现了污泥比氨氧化速率(以NH_4~+-N/VSS计)2.028 g·(g·d)~(-1)的高表达和亚硝酸盐氮90%以上的高积累.通过对污泥富集培养前后细菌群落组成的高通量测序分析,结果表明,培养前原污泥多样性较大,具有硝化作用的Nitrosomonas仅有0.24%,Nitrospira有2.7%.富集培养后的活性污泥多样性明显变小,优势菌种为Nitrosomonas(18%),而Nitrospira仅剩0.02%;包埋固定化后,系统迅速实现了短程硝化,最终短程硝化的速率达到了50 mg·(L·h)~(-1),亚硝酸盐氮积累率稳定在90%以上.  相似文献   

9.
利用SBR反应器模拟单级和多级A/O工艺,在进水水质、水力停留时间(HRT)、泥龄(SRT)、温度、缺氧好氧时间比(A/O比)均相同的条件下,考察了两种脱氮系统中氮的去除效果及N_2O的释放情况.结果表明,对于与城市污水水质相当的进水水质,单级A/O工艺和多级A/O工艺对COD、氨氮的去除率均在95%以上,二者无明显区别,但是前者对TN的去除效率高于后者,二者的总氮去除率分别为72.1%和52.2%.在氮素的转化过程中,典型周期内(3 h)单级A/O工艺和多级A/O工艺中N_2O的产生量分别为16.95 mg和3.59 mg,其转化率(即N_2O的产量与TN的去除量之比)分别为11.47%和4.11%,且N_2O的产生和释放主要发生在好氧段(硝化阶段),缺氧段(反硝化阶段)基本无N_2O释放.单级A/O工艺比多级A/O工艺更有利于硝化细菌(AOB、NOB)的生长,在相同的运行条件下,两工艺中AOB的优势菌种皆为Nitrosomonas,但前者的相对丰度高于后者;单级A/O工艺中NOB的种类和相对丰度也明显多于多级A/O工艺.在实际运行中采用合适的A/O分区或供氧方式既可以较好地去除污水中氮素污染,又可以减少N_2O的释放对大气造成二次污染.  相似文献   

10.
高氨氮废水与城市生活污水短程硝化系统菌群比较   总被引:18,自引:13,他引:5  
短程硝化是污水脱氮工艺中的重要环节,系统中的菌群结构决定了其处理效果.为探讨短程硝化系统中的微生物对不同污水的适应性,利用细菌16S rDNA克隆文库、磷脂脂肪酸(PLFA)和定量PCR分析方法对高氨氮废水和城市生活污水短程硝化系统中活性污泥的细菌群落结构、总体微生物的多样性以及功能微生物进行了比较.克隆文库结果表明两个系统中细菌群落结构明显不同,城市生活污水中细菌种类更丰富,但两个系统的优势菌群都属于变形菌门(Proteobacteria)和拟杆菌门(Bacteroidete).磷脂脂肪酸分析结果显示高氨氮废水短程硝化系统中微生物多样性指数和均匀度指数明显低于城市生活污水.定量PCR结果表明,高氨氮废水短程硝化系统中氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)的数量都多于城市生活污水短程硝化系统;高氨氮废水短程硝化系统中AOB比NOB高3个数量级,而城市生活污水短程硝化系统中AOB比NOB高2个数量级.  相似文献   

11.
生活污水常温处理系统中AOB与NOB竞争优势的调控   总被引:10,自引:4,他引:6  
曾薇  张悦  李磊  彭永臻 《环境科学》2009,30(5):1430-1436
常温(19℃±1℃)条件下,采用SBR工艺处理低碳氮比(C/N)实际生活污水,研究氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)竞争优势的调控,在接种全程硝化污泥的系统中使AOB成为优势菌群,启动并维持常温短程硝化.通过控制曝气量为40 L/h使系统溶解氧处于较低水平(DOaverage<1.0 mg/L),同时结合好氧硝化时间的优化控制,即在pH值“氨谷"点前及时停止曝气的短周期定时控制,强化AOB的竞争优势.待AOB的竞争优势初步形成后(亚硝酸盐积累率NO-2-N/NO-x-N达到50%),每周期曝气时间随着NO-2-N/NO-x-N的提高由3 h逐步延长至4 h、 5 h,从而提高NH+4-N去除率,进一步增强AOB在系统中的竞争优势,短程硝化成功启动,NO-2-N/NO-x-N稳定在95%以上.FISH检测结果表明AOB大约占总菌群的9.97%.在线控制好氧硝化时间可以很好地维持短程硝化效果,NH+4-N去除率达到97%以上.研究还表明,对于全程硝化污泥常温下如果不限制溶解氧,单纯依靠短周期定时控制无法使AOB成为优势硝化菌群.  相似文献   

12.
We investigated the communities of ammonia-oxidizing bacteria(AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction(PCR) followed by terminal restriction fragment length polymorphism(T-RFLP),cloning,and sequencing of the α-subunit of the ammonia monooxygenase gene(amoA).The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities.However,there was no remarkable difference among the AOB TRFLP profiles from different parts of the same system.The T-RFLP fingerprints showed that a full-scale wastewater treatment plant(WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor.The source of influent affected the AOB community,and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater.However,the AOB community structure was little affected by the treatment process in this study.Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp.not to Nitrosospira spp.Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples,while members of Nitrosomonas europaea cluster occurred in some systems.  相似文献   

13.
The effects of organic carbon/inorganic nitrogen (C/N) ratio on the nitrification processes and the community shifts of nitrifying biofilms were investigated by kinetic comparison and denaturing gradient gel electrophoresis (DGGE) analysis. The results showed that the nitrification rate decreased with an increasing organic concentration. However, the effect became weak when the carbon concentration reached sufficiently high level. Denitrification was detected after organic carbon was added. The 12 h ammonium removal rate ranged from 85% to 30% at C/N = 0.5, 1, 2, 4, 8 and 16 compare to control (C/N = 0). The loss of nitrogen at C/N = 0.5, 1, 2, 4, (8 and 16 was 31%, 18%, 24%, 65%, 59% and 62% respectively, after 24 h. Sequence analysis of 16S rRNA gene fragments revealed that the dominant populations changed from nitrifying bacteria (Nitrosomonas europaea and Nitrobacter sp.) to denitrifying bacteria (Pseudomonas sp., Acidovorax sp. and Comamonas sp.) with C/N ratio increase. Although at high C/N ratio the denitrifying bacteria were the dominant populations, nitrifying bacteria grew simultaneously. Conrrespondingly, nitrification process coexisted with denitrification.  相似文献   

14.
The effects of organic carbon/inorganic nitrogen (C/N) ratio on the nitrification processes and the community shifts of nitrifying biofilms were investigated by kinetic comparison and denaturing gradient gel electrophoresis (DGGE) analysis. The results showed that the nitrification rate decreased with an increasing organic concentration. However, the effect became weak when the carbon concentration reached sufficiently high level. Denitrification was detected after organic carbon was added. The 12 h ammonium removal rate ranged from 85% to 30% at C/N = 0.5, 1, 2, 4, 8 and 16 compare to control (C/N = 0). The loss of nitrogen at C/N = 0.5, 1, 2, 4, (8 and 16 was 31%, 18%, 24%, 65%, 59% and 62% respectively, after 24 h. Sequence analysis of 16S rRNA gene fragments revealed that the dominant populations changed from nitrifying bacteria (Nitrosomonas europaea and Nitrobacter sp.) to denitrifying bacteria (Pseudomonas sp., Acidovorax sp. and Comamonas sp.) with C/N ratio increase. Although at high C/N ratio the denitrifying bacteria were the dominant populations, nitrifying bacteria grew simultaneously. Conrrespondingly, nitrification process coexisted with denitrification.  相似文献   

15.
羟胺抑制协同pH调控对人工快渗系统短程硝化的影响   总被引:4,自引:0,他引:4  
陈佼  张建强  文海燕  张青  杨旭  李佳 《环境科学学报》2016,36(10):3728-3735
针对人工快渗系统(CRI)总氮去除率低的问题,研究了羟胺抑制协同pH调控对人工快渗系统实现由全程硝化向短程硝化转化的可行性,探讨了其对系统内氮素污染物迁移转化和硝化功能菌空间分布及活性的影响.结果表明,0.5 mmol·L~(-1)羟胺连续添加13 d后可实现CRI系统短程硝化的快速启动,氨氮去除率、亚硝氮积累率分别为91.1%、77.9%,经16 d不添加羟胺运行后氨氮去除率、亚硝氮积累率分别降低3.9%、9.8%,此时调控进水pH至8.4,氨氮去除率和亚硝氮积累率均超过90%,CRI系统短程硝化效果显著且稳定性较高.羟胺对硝化菌具有选择性抑制,对AOB和NOB产生明显抑制的浓度分别为0.7、0.5 mmol·L~(-1),羟胺浓度为1.0 mmol·L~(-1)时AOB和NOB活性均被严重抑制且解抑较难;pH调控对短程硝化的影响主要与游离氨(FA)的抑制作用有关,对AOB和NOB产生明显抑制的FA浓度分别为26.5、5.6 mg·L~(-1),NOB比AOB对FA的敏感性更高.  相似文献   

16.
为探究游离亚硝酸(FNA)侧流处理絮体污泥抑制亚硝酸盐氧化菌(NOB)活性启动全程自养脱氮(CANON)工艺的可行性,考察了FNA处理对氨氧化菌(AOB)和NOB活性的影响,探究在颗粒-絮体污泥SBR反应器中水力筛分的絮状污泥经侧流FNA处理的运行效果. 结果表明:0.6mg/L FNA处理后的R1经过30d运行,NH4+-N去除率恢复到处理前的水平,并且短程硝化稳定,系统平均出水总氮为13.84mg/L,且△NO3--N/△NH4+-N比值接近CANON反应方程式理论比值0.11,成功启动CANON工艺. 而0mg/L FNA处理的R2由于NOB大量增殖导致启动失败. 批次试验结果证实,经过0.6mg/L FNA处理后,6h内NOB活性仅为对照组(FNA=0mg/L)的16.39%,并且在随后的运行中并未发现NOB活性的恢复,NOB得到了有效的抑制. 但与此同时,AOB的活性也受到了影响,反应器中NH4+-N去除率仅为处理前的69.69%,AOB活性6h仅恢复68.06%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号