首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
郝晨林  邓义祥  富国  乔飞 《环境科学研究》2020,33(11):2467-2473
环境背景条件变化会导致湖泊ρ(Chla)与环境因子响应关系发生变化.采用低通时序滤波轨线方法可以方便地识别ρ(Chla)与环境因子响应关系的时间转折点,将长时间序列数据进行分段,从而建立分段回归函数,为研究环境因子与湖泊ρ(Chla)的因果关系提供了一种新的思路.以太湖为研究对象,采用低通时序滤波轨线方法,评估了2001—2018年太湖的ρ(Chla)与营养盐〔ρ(TN)、ρ(TP)〕以及氮磷比〔ρ(TN)/ρ(TP)〕的变化过程,研究了年均气温、滞留时间对产藻效率〔ρ(Chla)/ρ(TP)〕的影响过程.结果表明:①2006年、2011年为太湖营养过程轨线的两个时间转折点,将太湖的营养过程轨线分为3段.第1段为污染阶段(2001—2006年),太湖的ρ(TN)、ρ(TP)、ρ(Chla)同步升高,于2006年达到第一个峰值;第2段为修复阶段(2006—2011年),太湖的ρ(TN)、ρ(TP)、ρ(Chla)同步降低,于2011年达到谷值;第3段为富营养化加剧阶段(2011—2018年),太湖的ρ(TN)呈下降趋势,ρ(TP)与ρ(Chla)同步升高,至今未出现转折点.②太湖藻类生长的限值因子为ρ(TP),2011年之后氮磷比进入浮游藻类适宜生长区,为蓝藻暴发提供了条件.③2011—2018年产藻效率增长了51%,且目前仍在升高未出现转折点,气温升高可能是主要原因.④依据2011—2018年的滤波值建立ρ(Chla)-ρ(TP)的函数预测,为控制蓝藻暴发〔ρ(Chla) < 10 mg/m3〕,太湖的ρ(TP)需要控制在52 μg/L以下.⑤2006年后,太湖的滞留时间呈现缩短趋势,对藻类的繁殖形成抑制,但滞留时间不是影响产藻效率的关键因子.研究显示:自2006年太湖流域实施一系列生态修复工程后,湖泊氮浓度明显降低,但由于流域氮磷排放量较大而且湖体沉积物中累积磷含量较高,致使水体营养盐水平仍未降到能显著抑制蓝藻生长的水平;目前气温升高趋势仍在持续,太湖的控藻形势严峻,为摆脱气候变暖对蓝藻水华趋势的决定作用,应当在控氮基础上加大控磷的力度,同时更多考虑水文调节、生物修复、加强打捞等措施.   相似文献   

2.
我国东部浅水湖泊水生态效应特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为探究我国东部浅水湖泊生态系统的时空异质性及其演替的响应指标,基于东部浅水湖泊长时间序列(1986-2014年)的监测数据,分析了不同湖泊类型的水质和浮游植物群落分布特征,并综合运用稳态转换理论和典范对应分析方法(CCA),研究了富营养化湖泊浮游植物群落的演替特征以及响应因子.结果表明:①从水系上看,太湖水系湖泊的水质最差,ρ(TP)、ρ(TN)和ρ(Chla)最高,分别为(0.276±0.606)(3.563±1.430)mg/L和(14.801±10.117)μg/L,SD(透明度)为(0.486±0.272)m;从水文连通性上看,湖泊的水质为通江湖泊>非通江湖泊>阻隔湖泊.②空间分布上,湖口以下干流浮游植物密度最高,为2.674×107 L-1.蓝藻门为东部浅水湖泊的优势种群,密度最高达1.897×107 L-1,绿藻门和硅藻门次之,黄藻门最少,仅为3.951×103 L-1.③东部浅水湖泊生态系统演替发生在ρ(Chla)为5.21~10.57 μg/L阈值范围内.④以东部典型湖泊-太湖为例,浮游植物群落分别在1997-1998年和2000-2001年两个时间梯度达到最大值.EC(电导率)和ρ(TN)是影响太湖浮游植物群落分布的显著因子.研究显示,随着东部浅水湖泊水质恶化,浮游植物群落结构特征发生突变,导致其生态系统发生演替,预防东部浅水湖泊生态系统演变应严控EC和ρ(TN).   相似文献   

3.
针对河湖氮磷控制标准不衔接问题,以大型浅水湖泊太湖为例,基于2013—2018年环太湖主要入湖河流和湖体总氮浓度〔ρ(TN)〕、总磷浓度〔ρ(TP)〕、叶绿素a浓度〔ρ(Chla)〕、水量等监测数据资料,采用湖盆模型(Bathtub模型),构建太湖主要入湖河流与湖体ρ(TN)、ρ(TP)和ρ(Chla)的响应关系,分析了主要入湖河流ρ(TN)、ρ(TP)和水量对湖体富营养化的影响,探讨了太湖主要入湖河流水量及其与湖体氮磷协同控制限值. 结果表明:①太湖主要入湖河流氮磷的输入仍显著影响湖体ρ(TN)、ρ(TP),尤其是对西北部湖区的富营养化水平产生了显著影响;②在入湖水量方面,湖西区入湖水量增加可导致太湖富营养化程度增加,而“引江济太”水量输入在一定程度上改善了太湖水质. 建议分区域控制直接入湖河流水量,其中,湖西区直接入湖水量控制在60×108~70×108 m3之间,望虞河“引江济太”水量控制在15×108~20×108 m3之间;③针对太湖流域而言,现行《地表水质量标准》(GB 3838—2002)在协同控制河、湖氮磷方面存在一定的不足,仅通过控制入湖河流ρ(TN)、ρ(TP),太湖ρ(TN)、ρ(TP)难以达到Ⅲ类水质标准;④与全湖平均值相比,湖西区要达到同一标准限值,入湖河流协同控制限值要更为严格. 在河湖氮磷衔接目标制定上,建议湖西区单独设定协同控制目标浓度值. 另外,建议结合《地表水质量标准》(GB 3838—2002),开展太湖流域水质、水量协同控制,有效约束入湖通量,达到河湖氮磷协同控制目的.   相似文献   

4.
水文地貌分区下鄱阳湖丰水期水质空间差异及影响机制   总被引:4,自引:0,他引:4  
张琍  陈晓玲  张媛  陈莉琼  张鹏 《中国环境科学》2014,34(10):2637-2645
在2011年7月鄱阳湖丰水期水质参数采样分析的基础上,结合Delft3D水动力模型结果,针对鄱阳湖湖区建立了8个水文地貌分区,分析了丰水期总悬浮泥沙(TSS),总磷(TP)、总氮(TN)与叶绿素a(Chla)浓度的空间分布特征,研究了各分区下的水质因子之间的关系.结果表明,鄱阳湖丰水期平均TSS浓度为33.65mg/L,远高于2003年以前10mg/L的平均浓度水平;平均氮、磷营养盐浓度分别为1.61mg/L及0.075mg/L,已达到并远远高于富营养化发生条件,而平均Chla浓度为5.99μg/L,并未达到富营养化湖泊水体临界值.Chla与其他各水质因子无显著相关性,而高泥沙浓度区域的TP与TSS呈现显著相关性.在不同鄱阳湖水文地貌分区下,高强度湖泊采砂活动的北部高流速水域TSS浓度高于河口三角洲水域3倍;TN,TP营养盐浓度表现为流域面源污染负荷大的赣江,饶河河口三角洲水域≥高强度湖泊采砂活动的北部高流速水域>流域污染负荷较小的修水河口三角洲水域及中部湖心水域.Chla则受营养盐浓度水平与水动力因素共同作用而表现为河流交换速度慢且高营养盐浓度水域>水流交换速度快且高营养盐浓度水域>水流交换速度慢且低营养盐浓度水域,其中饶河信江潼津河河口三角洲水域Chla浓度最高,平均水平达到12.53μg/L,超过了富营养化水体的临界值.  相似文献   

5.
刘杰  何云川  邓建明  汤祥明 《环境科学》2023,44(5):2592-2600
全球变暖加剧了湖泊富营养化问题.太湖作为中国典型的大型富营养化浅水湖泊,有害蓝藻水华问题尤为突出.以太湖作为研究对象,利用1992~2020年气象(气温、风速、降雨量、日照时长)、水质[总氮、总磷(TP)、电导率、pH、化学需氧量]和生物[叶绿素a(Chla)]监测数据,基于连续型贝叶斯网络模型构建了Chla的模拟模型,研究太湖不同气象和水质条件下的Chla水平.结果表明,春季“温风比”平均水平为6.67℃·s·m-1,ρ(TP)低于0.130 mg·L-1左右时,Chla偏高(>75分位数,下同)的概率小于75%;夏季“温风比”平均水平为10.52℃·s·m-1,ρ(TP)低于0.257 mg·L-1左右时,Chla偏高的概率小于75%;秋季ρ(TP)平均水平为0.154 mg·L-1,“温风比”小于6.30℃·s·m-1左右时,Chla偏高的概率小于75%.基于以上研究,进一步利用连续型贝叶斯网络模型构建的Chla模型模拟了不同气候变化背景下的营...  相似文献   

6.
《环境保护科学》2015,(6):58-62
为了测评东钱湖的水质营养化状态,从2014年4月到9月监测湖水温度、透明度(SD)、水质总氮(TN)含量、总磷(TP)含量、叶绿素(Chla)含量以及沉水植物生物量的变化情况。结果显示,湖水水温缓慢增加到8月中旬,而TP含量、TN含量、Chla含量以及沉水植物生物量的动态变化特征具有明显的统一性,即东钱湖的水质在沉水植物和浮游植物的生长前期较为劣质。相关性分析表明,沉水植物生物量与TP和TN为高度负相关,而与水温为正相关。综合分析后认为,沉水植物生物量的增加是导致后期东钱湖水质转换的关键因素,说明沉水植物对东钱湖水生环境稳态转换具有重要作用。  相似文献   

7.
近25年洞庭湖水质演变趋势及下降风险   总被引:2,自引:0,他引:2  
利用1991~2015年水质数据研究了洞庭湖水质演变特征,识别了主要驱动因子,并探讨了水质下降对其生态风险影响.结果表明,1991~2015年间,洞庭湖水质总体呈下降趋势,TN和TP是影响水质变化的主要指标,其浓度年均值分别介于1.060~2.072mg/L和0.026~0.146mg/L;其中,1991~2002年间,TN和TP浓度均显著上升,多元回归分析显示水位和泥沙淤积是导致洞庭湖TN和TP浓度升高的主要因素;2003~2015年间,TN浓度进一步明显上升,而TP浓度维持高位,波动变化,氮、磷负荷输入量和水位是影响TN和TP浓度变化的主要因素.洞庭湖生态风险等级则由轻微风险转变为中等风险,TP是影响生态风险的主要水质指标;受洪水、农业面源污染和城市化等影响,洞庭湖磷风险时空差异较大,1991~2008年间,各湖区磷风险均有所升高,其中西洞庭湖磷风险增长幅度最大;2009~2015年,各湖区磷风险均有所降低,其中西洞庭湖下降幅度最大,而东洞庭湖下降幅度较小.因此,进一步控制入湖氮磷负荷、优化水位及重点关注磷风险是保护洞庭湖水生态的重要举措.  相似文献   

8.
为探讨影响洱海藻类生长的主要水质因子,对洱海近20年的水质变化及2009—2010年水质和ρ(Chla)时空变化进行了研究. 结果表明,1992年以来上覆水中ρ(TN)、ρ(TP)和ρ(Chla)总体呈上升趋势,近年来有所下降,ρ(Chla)与ρ(TN)和m(N)/m(P)呈显著正相关. 2009年5月—2010年12月上覆水中ρ(TN)为0.20~0.96mg/L,ρ(TP)为0.018~0.042mg/L,ρ(Chla)为6.02~22.48μg/L;年内ρ(TN)和ρ(TP)最高值均出现在7—8月,m(N)/m(P)和ρ(Chla)最高值出现在8—9月,ρ(Chla)与m(N)/m(P)呈极显著正相关.随水深增加,ρ(TN)和ρ(TP)呈上升趋势,ρ(Chla)呈下降趋势;1d内ρ(TN)最高值出现在17:30前后,ρ(TP)和ρ(Chla)最高值出现在14:30前后,ρ(Chla)与ρ(TP)呈显著正相关;年内7—8月水质最差. 洱海水体ρ(Chla)年际变化主要受ρ(TN)和m(N)/m(P)影响,年内变化主要受m(N)/m(P)影响,而日变化则主要受ρ(TP)影响.   相似文献   

9.
太湖梅梁湾理化指标分层的空间分布特征   总被引:3,自引:1,他引:3  
为了解大型浅水湖泊水体理化指标的空间分异特征,在太湖梅梁湾布设62个采样点,垂向分为3层,调查水体中Chla、TN、TDN(溶解性总氮)、TP、TDP(溶解性总磷)的质量浓度及SD(透明度)、DOS(溶解氧饱和度)等水体理化指标,统计分析了夏季太湖水体理化指标空间分布特征及影响因素. 结果表明:①梅梁湾水体理化指标垂向时空变幅不同,垂向相对变幅平均值ρ(TN)为68.0%,ρ(TDN)为40.1%,ρ(TP)为138.0%,ρ(TDP)为35.7%,ρ(Chla)为66.0%,DOS为79.0%,营养盐总量的垂向差异比溶解态大;②平面上,水华堆积区ρ(TN)、ρ(TDN)、ρ(TP)、ρ(TDP)、ρ(Chla)、DOS平均值分别为梅梁湾平均值的4.45、2.45、6.45、4.74、2.08、1.02倍,比垂向差异大;③风场驱动下蓝藻堆积对水体各理化指标空间分布的影响巨大;④ρ(Chla)垂向分层明显,ρ(Chla)的垂向变幅表层0.2m处显著高于下层,可达89.7μg/L. 浅水湖泊的水体理化指标时空变异大,受气象条件、水动力条件等因素的影响,故在监测点位布设及数据分析时,应考虑垂直分层采样、滨岸带采样并详细记录采样条件.   相似文献   

10.
太湖微囊藻毒素的时空分布特征   总被引:1,自引:0,他引:1  
微囊藻毒素对水体危害严重,为了探究太湖中微囊藻毒素的变化规律及其主要环境影响因子,对太湖34个采样点进行了为期1 a(2011年11月—2012年10月)的监测与采样,分析了水体中ρ(MCs)(MCs为微囊藻毒素)〔包括ρ(TMC)(TMC为总藻毒素)、ρ(EMC)(EMC为胞外藻毒素)和ρ(IMC)(IMC为胞内藻毒素)〕,以及ρ(Chla)、蓝藻生物量、ρ(TN)、ρ(TP)、N/P〔ρ(TN)/ρ(TP)〕、pH、温度、透明度、电导率、ρ(DO)等水环境因子的变化特征,讨论了ρ(MCs)与各水环境因子之间的相关性. 结果表明:ρ(MCs)在太湖中呈现一定的规律性,在7—8月蓝藻爆发期,ρ(MCs)低于0.10 μg/L,之后逐渐升高,9月达到最高值(0.28 μg/L). 受地理位置和沉积环境等影响,太湖西北区MCs污染最严重,ρ(MCs)最大值为0.30 μg/L. 相关性分析结果表明,ρ(MCs)与ρ(Chla)、ρ(TN)、ρ(TP)、N/P显著相关,其中,ρ(MCs)与ρ(Chla)呈极显著正相关(P<0.01);ρ(IMC)和ρ(TMC)均与蓝藻生物量呈显著正相关(P<0.05),而ρ(EMC)与蓝藻生物量相关性不显著;ρ(IMC)和ρ(TMC)均与ρ(TN)呈极显著负相关(P<0.01),而ρ(EMC)与ρ(TN)呈显著负相关(P<0.05);ρ(MCs)与ρ(TP)呈显著正相关,而与N/P呈显著负相关(P<0.05).   相似文献   

11.
基于因子分析的太湖湖湾污染物分布特征   总被引:1,自引:0,他引:1  
根据太湖三大湖湾的水质监测数据,运用因子分析(Factor analysis)方法对该湖湾7种污染物成分进行了统计分析,并讨论了水体中污染物的来源。结果表明:梅梁湾第一污染因子主要是TN、TP和Chla,第二主因子主要代表NH4+-N和高锰酸盐指数,NO3--N对第三主因子贡献明显;贡湖湾第一污染因子为TN、TP、高锰...  相似文献   

12.
2008年3月至2009年9月对紫阳湖生态修复效应进行了全程跟踪监测及诊断指示研究。研究表明,通过水生生物群落构建,水生态环境有了明显改善,全湖水质达到地表水IV标准,透明度上升到100 cm左右,叶绿素a下降到10 mg/m3以下。生态修复后各指标50%的效应时间序列为Chla、DO、SD、TP、NH3-N、TN和COD。研究认为,Chla/SD作为湖泊水质指数(LQI)是检验生态修复效果较敏感的指标,可用于浅水富营养湖泊生态修复后水质的诊断和评价。  相似文献   

13.
淀山湖营养物输入响应关系的分位数回归分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用分位数回归方法研究了淀山湖富营养化输入(总氮和总磷)及响应指标(叶绿素a)之间的关系.结果表明,淀山湖营养物TP和TN(输入指标)对不同分位叶绿素a(响应指标)的影响不同.在低分位(0.10~0.50)时,淀山湖的藻类生物量(叶绿素a)主要受TP的控制;在高分位(0.60~0.90)时,淀山湖的藻类生物量同时受TP和TN的控制;TN对藻类生长的抑制作用随分位数升高而加强.0.60分位时是TP和TN对藻类增长影响发生变化的分位.普通最小二乘法(OLS)方法得到的经验方程,不能估计淀山湖多个因素不同变化速率对湖泊营养物输入响应关系的影响.  相似文献   

14.
太湖水体及表层沉积物磷空间分布特征及差异性分析   总被引:9,自引:4,他引:9  
通过对水体不同程度富营养化湖泊——太湖全湖40个位点的高密度采样分析,得到太湖水体及表层沉积物各污染因子在太湖的空间分布特征图,结果表明,太湖水体中SRP、TP、TN及沉积物中TOC、TN、TP及P的各形态等在空间上表现出明显的分异性,水体中污染物主要分布于竺山湾、五里湖、梅梁湾及太湖西部等湖区,TN、TP最低值为0.05、0.88mg·L-1.沉积物中Fe-P的分布与水体中TP类似,含量在29.13~258.31mg·kg-1之间变化.Ca-P除主要分布于南部太湖及东太湖外,西北部湖区也见大量蓄积,最高值达357.68mg·kg-1.OP的高值分布于西北部湖区,最高值达371.91mg·kg-1.沉积物中IP占TP的含量高于OP,最高值高出OP含量约50%.IP中Fe-P的比例虽然低于Ca-P,但与水体中SRP、TP之间的高度相关性(R为0.49、0.64),指示Fe-P的内源释放为太湖水体中磷的重要来源之一.而沉积物中TOC与C/N、TN、TP及P的各形态之间的显著相关性,表明了高有机质含量更利于对营养盐的蓄积埋藏.太湖水体及表层沉积物各指标空间上表现出如此明显的区域性差异,除受不同湖区入湖污染源直接作用外,还和各参数不同的生物地球化学行为有关.  相似文献   

15.
华祖林  汪靓  顾莉  褚克坚 《中国环境科学》2014,34(12):3215-3222
在前人工作的基础上,利用门限极值的广义Pareto分布理论和超出阈值峰(Peak Over Threshold,POT)方法,提出了一种确定湖泊参照状态浓度的新方法.该方法不仅能够给出更为精确的置信区间,而且克服了广义极值分布理论取用数据浪费等缺陷.将该方法应用到太湖的水质基准参照状态中,通过POT方法对太湖8个站点1995~2006年总氮(TN),总磷(TP)和叶绿素a(Chl-a)的数据进行预处理,分别以-1.0mg/L, -0.05mg/L与-4μg/L作为它们观测值相反数的门限值,结果表明观测值的相反数符合广义Pareto分布,验证了方法的可行性.推荐采用25%分位点的值作为太湖总氮,总磷和叶绿素a的参照状态,即太湖的参照状态是:总氮0.66mg/L;总磷0.023mg/L;叶绿素a为1.27μg/L.最后分别得出了它们各自的95%置信区间,而且其精度明显高于广义极值分布理论结果.  相似文献   

16.
太湖氮磷营养盐大气湿沉降特征及入湖贡献率   总被引:11,自引:2,他引:11  
2009年8月—2010年7月在太湖流域不同区域10个采样点收集降水样品230多个,测定其中不同形态N,P营养盐的质量浓度,分析太湖大气湿沉降中N,P营养盐沉降特征,计算N,P营养盐湿沉降率及其占太湖河流入湖负荷的贡献率. 结果表明:湿沉降中ρ(TN)年均值为3.16 mg/L,DTN(溶解性总氮)占TN的70%以上,其中以NH4+-N为主;湿沉降中ρ(TN)年均值最高值出现在南部湖区,最低值出现在北部湖区. 湿沉降中ρ(TP)年均值为0.08 mg/L,相对较低. 5个区域湿沉降中不同形态N的质量浓度均表现为冬季高、夏季低,而不同形态N,P的湿沉降量均为夏季最大. 南部、东部湖区TN的湿沉降率相对较大. 各采样点湿沉降中NH4+-N沉降率约占DTN沉降率的30.4%~52.0%,NO3--N沉降率约占DTN的31.6%;各区域间湿沉降中DTP(溶解性总磷)占TP的比例差异较大. 大气湿沉降中TN和TP的年沉降总量分别为10 868 和247 t,为同期河流入湖负荷的18.6%和11.9%,湿沉降对太湖富营养化的贡献及可能带来的水生态系统的影响不容忽视.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号