首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为了安全可靠地建好每座大跨桥梁,就要对每座桥的施工过程进行安全监测,传统的安全监测方法是采用电测技术,由于抗电磁干扰性差等原因,测试的数据真实性差。笔者在布拉格光纤光栅的传感原理、室内悬臂梁试验和埋设工艺的研究基础上,成功地在黑大公路牛头山大桥上布设了布拉格光纤光栅应变传感器,为对比布拉格光纤光栅的监测结果,埋设了应变砖测试混凝土的应变,监测了该桥预应力混凝土连续梁先简支后连续施工的全过程,施工监测结果表明:布拉格光纤光栅监测大桥施工结果准确、稳定和可靠,同时证明该光纤光栅测试技术可以用于桥梁施工过程的安全监测且结果明显好于传统的电测技术。  相似文献   

2.
在土木工程领域,光纤智能健康监测方法是对建筑物或构筑物的健康状况进行检测的一种新方法.采用200 mm×300 mm×3 000mm试件,对比试验研究桥梁监测中广泛应用的振弦传感器与布拉格光栅传感器.结果表明,布拉格光栅传感器具有更好的检测精度、线性响应和重复性.根据光纤光栅传感器的应变传感特性标定试验,在武黄高速公路的典型桥涵中布设光栅传感器,采集分析加固前后静载试验工况下底部钢筋以及桥涵加铺层钢筋的应变数据,评估高速公路桥梁加固效果,并对桥涵结构进行长期监测.监测结果表明,埋入的光纤光栅可方便地监测桥涵安全状况,其稳定性与耐久性满足钢筋混凝土桥梁结构长期健康的要求.同时,根据光纤光栅传感技术在桥梁监测中的应用实践,探讨了其在桥梁监测中应用所面临的一些关键问题及解决途径.  相似文献   

3.
光纤Bragg光栅传感器实现斜拉桥索力实时监测的研究   总被引:6,自引:1,他引:5  
民用工程结构的健康监测 ,日益引起人们的重视 ,光纤传感技术 ,尤其是光纤光栅传感技术 ,因其易构成高性能、低成本的传感器阵列 ,并在结构监测应用工程中 ,具有巨大的潜力。笔者介绍一种斜拉桥索力实时监测的新方法即光纤光栅法。将光纤光栅刚性粘贴于传感头外表面上 ,使传感头承受拉索的索力 ,通过对光纤光栅波长移动量 (Δλb)的解调 ,以测出索力的大小。通过实验结果与理论分析证明 ,该测试系统具有结构简单、测量范围大、稳定性和线性度好等特点 ,该监测系统既可用于斜拉桥施工阶段的索力测定 ,也可以用于在役斜拉桥结构的长期安全监测。  相似文献   

4.
基于光纤光栅的斜拉索振动参数监测实验研究   总被引:4,自引:2,他引:2  
斜拉索是斜拉桥的主要受力构件 ,对其动力特性进行监测具有重要意义。斜拉索工作条件恶劣 ,现有的测试方法难以实现长期在线监测 ,实现斜拉索的振动在线测量 ,传感器是问题的关键。光纤光栅传感器具有极其优良的稳定性 ,已被证实适用于长期监测 ,在结构监测领域具有非常广泛的应用前景。笔者提出了一种基于光纤光栅传感器的斜拉索动力特性在线监测方法 ,建立了用光纤布拉格光栅作传感器监测斜拉索振动的测量模型 ,为验证该模型建立了模拟试验装置 ,在实验室进行了模拟实验研究 ,并将光纤光栅和传统的电阻应变片两种测量方法进行了实验对比。与传统测试手段相比 ,该方法结构简单 ,成本低 ,并能实现斜拉索动力特性的长期在线监测。  相似文献   

5.
为提高燃气管道监测的时效性和准确性,利用光纤光栅技术研究燃气管道泄漏过程的振动特性。根据实际工况搭建输气管道试验平台,通过光纤布拉格光栅(FBG)传感系统采集管道壁面振动信息,使用傅立叶变换和滤波等处理手段分析振动信号频谱。结果表明:输气管道泄漏瞬间会产生明显的振动波,泄漏后泄孔附近管道壁面振动的加速度增大,且增幅与泄孔大小呈正相关关系,与沿管道方向传播距离呈负相关关系;泄漏产生了频率约为350 Hz的振动波;应用光纤光栅传感技术定位泄漏点,精度达±2. 5 m。  相似文献   

6.
基于光纤传感网技术提出一种应用于油田各采油井中集防火、防盗与钻油井架作业安全在线实时监测于一体的智能油田综合监测系统。利用光纤布拉格光栅(FBG)分别进行温度和应变传感器封装,并进行混合组网,对油田各油井区域的实时温度、井架形变、作业区域周界或储油罐周界的入侵、盗窃等进行在线监测,采用自主研发的16通道光纤光栅解调设备对监测网络各传感节点的光信息进行实时解调,通过后端信号处理方法对温度、应变异常和周界入侵进行自动检测、识别和报警,实现油田生产及安全的在线自动综合监测。  相似文献   

7.
法布里-珀罗光纤传感器在桥梁健康监测中的应用   总被引:1,自引:2,他引:1  
对桥梁实施监测 ,是诊断桥梁健康状况的主要手段 ,现代传感技术和计算机技术的发展 ,使桥梁健康状态的实时监测变为可能。笔者分析了法布里 -珀罗光纤传感器的基本原理和特性 ,设计了一种法布里 -珀罗应变测试系统 ,并在预应力混凝土连续桥梁上与电阻式应变传感器进行了应变对比测试试验。试验结果表明 ,法布里 -珀罗光纤传感器对环境温度不敏感 ,易与钢筋、混凝土复合 ,适用于桥梁结构的应变测试 ,可用于桥梁健康状态的在线监测  相似文献   

8.
提出一种具有视频联动功能的光纤围栏周界入侵监测系统。串联布拉格光纤光栅传感器(FBG)阵列组成传感光缆对周界围栏入侵信号及时感知并进行准确报警和定位,光纤围栏入侵监测系统把报警及定位信息传输给与其联动的视频监控系统,控制监控设备对引起报警的入侵地点进行重点监控,并在第一时间切换并放大显示入侵现场的图像,同时保存现场录像对入侵事件进行备案。本系统方案设计合理,联动功能的实现使得本身具有突出优点的光纤围栏入侵监测系统同时具备了对入侵的监测、监控以及入侵对象的准确辨识和取证功能,不仅提高了系统的智能化水平,更重要的是进一步改善了系统的安全防范性能。  相似文献   

9.
粉尘燃爆等事故的频发,使本质安全型粉尘监测技术的需求越来越迫切。光纤光栅元件以光为传感信号,具有无电监测、抗电磁干扰、精度高、可靠性好、耐高温、耐腐蚀等优点,是本质安全的新一代光无源传感器件,非常适合于恶劣粉尘环境的安全监测。利用一对光纤准直器和一个光纤光栅,构建了一种粉尘浓度探测装置,阐述了测量装置和测量原理,搭建了测试平台,对粉尘浓度与光纤光栅反射谱功率的关系进行了实验研究。测试结果表明,随着粉尘浓度的增大,光功率呈现基本的线性减小趋势,测量技术有望得到推广应用。  相似文献   

10.
为解决传统监测方法在大型基坑支撑结构监测中难度大、效率低、误差大等问题,提出利用分布式传感监测技术对太原火车站调蓄池桁架支撑体系栈桥应力、应变进行监测。基于布里渊光时域反射技术(BOTDR)的测量原理和优点,设计应用一套分布式栈桥监测系统,对栈桥扰动下测试和长期变形监测。结果表明,基于BOTDR技术的栈桥分布式光纤监测系统能够准确地反映支撑体系中栈桥的变形情况,具有显著优势,可满足栈桥变形长期监测和早期安全预警。  相似文献   

11.
毕晓蕾    于海燕  刘全桢    刘宝全    高鑫    张云朋    刘娟   《中国安全生产科学技术》2015,11(8):22-25
目前,外浮顶储罐的火灾报警系统是采用光纤光栅火灾报警系统。但是,考虑到光纤光栅火灾报警运行费用高和存在报警盲目的缺点,研制了基于气压监测的外浮顶储罐火灾报警系统。针对不同型号的感温探头,开展了火灾报警系统火灾报警响应时间和报警温度实验,分析了火焰距离、热熔管管径以及管壁厚度与对火灾报警响应时间和报警温度的影响。实验结果表明:随着火焰距离的增大,报警响应时间增长;相同火焰距离条件下,随着感温热熔管直径的增大,报警响应时间增长,报警温度升高。Φ6热熔管的火灾报警温度为116.8℃,Φ8热熔管的火灾报警温度为129.1℃,Φ10热熔管的火灾报警温度为156.7℃。  相似文献   

12.
基于3座预应力混凝土空心板桥在试验荷载下加固前后荷载试验及理论计算得出的板底平均应力和挠度结果,对比粘贴碳纤维筋加固、简支转连续加固和粘贴钢板加固3种方法对简支预应力空心板桥结构的力学性能的提升效果.结果表明,粘贴碳纤维筋加固及粘贴钢板加固方法对结构刚度有轻微提高,对结构的延性及承载力有一定的提高;简支转连续加固方法在...  相似文献   

13.
为提高层理地质条件下大变形巷道的稳定性,延长巷道使用寿命,采用具有较大变形承载能力的喷钢纤维混凝土与弹性锚杆耦合支护技术加固围岩。首先研究层理状地质条件下高应力软岩巷道的破坏特点及规律,确立支护结构和时效耦合的关系,并通过钢纤维混凝土试样的动静荷载试验,研究混凝土强度与钢纤维掺量的关系,得到喷钢纤维混凝土合理的钢纤维掺量。此外,针对大变形巷道开挖初期变形量大、破坏速度快的特点,设计具有让压吸能作用的新型弹性锚杆,并将此弹性锚杆结合喷钢纤维混凝土技术进行工业试验,试验的位移监测结果表明:该方案位移量比原方案减小约50%,且支护10个月后未出现裂缝。  相似文献   

14.
先张法预应力空心板桥在服役过程中会出现跨中挠度过大、预应力钢束配筋不足以及预应力损失过大等问题,从而导致桥梁线型不正常、抗弯承载能力不足,再加上先张法钢束不上弯,不能更好参与抗剪,往往会使得支点截面产生抗剪能力不足的现象。要使桥梁同时满足承载能力极限状态和正常使用极限状态的要求,需对其加固。对于多跨简支体系的先张法板桥,较好的方法是采用简支转连续的加固方法。以云南玉溪黑箐桥简支转连续加固为例,分别采用理论计算和荷载试验的方法对该桥进行分析。理论计算的结果表明:体系转换后,跨中弯矩、挠度明显减小,达到了加固效果,提高了桥梁的抗剪、抗弯承载力和抗裂性。荷载试验结果表明:简支转连续加固后,空心板底缘应力平均降低13.2%、挠度平均减小20.7%,结构刚度大幅度提高。  相似文献   

15.
为避免新管幕法下穿铁路既有线施工所导致的轨面不平、列车晃车等铁路运营事故,以太原市迎泽大街下穿火车站通道工程为施工背景,考虑火车站内强电磁干扰环境对传统电磁、电容式传感器的影响,选用合适的光纤光栅传感器对地表沉降进行监测,设计了监测方案并搭建了监测系统,获得了施工引起的地表沉降数据,并用数值模拟方法研究了土体沉降,获得了地表横向距离沉降规律,对比论证了该监测技术的正确性和有效性。监测和计算结果表明,新管幕法施工引起的地表沉降呈漏斗状,中间大两头小,监测断面的最大沉降值为21.2 mm,在施工安全范围内。  相似文献   

16.
江梦梦  姚斌  成艳英 《火灾科学》2013,22(4):194-200
随着交通运输的快速发展,公路隧道火灾监测与报警越来越重要。目前分布式光纤测温系统已被广泛应用到隧道火灾的监测中,外界风速和隧道断面对火灾监测有一定的影响。该文通过FDS数值模拟和全尺寸实验模拟不同高度的公路隧道发生火灾时,分布式光纤测温系统的报警响应情况。结果表明:在外界风力作用下,传感器的报警位置发生显著偏移;随着隧道高度的增加,分布式光纤感温火灾探测系统报警响应时间延长,可能会不报警。  相似文献   

17.
The vulnerability of major-hazard industrial plants to natural hazards has been recognized as an emergent issue whose importance is underlined by the Sendai Framework, established immediately after the Tohoku earthquake of 2011, in Japan. Hence, seismic risk analysis is of paramount importance as testified by the intense research activity that characterized the last years. In this respect, structural health monitoring can represent a valuable tool able to strongly help the decision-making phase. Along this main vein, optical fibers (OFs) represent a class of sensors able to both monitor critical conditions, as leakage of hazardous material, and activate safety barriers, if any. More precisely, optical fibers represent an economic solution, whose characteristics appear particularly suitable for dangerous environments like major-hazard plants. However, investigations relevant to their use for seismic monitoring of chemical/petrochemical plants are rather limited, especially when subject to strong dynamic excitations. As a result, this paper deals with the analysis of optical fiber Bragg gratings (FBGs) applied to bolted flange joints (BFJ) under cyclic loadings. More precisely, two experimental programs, i.e., a cyclic test on a single BFJ and a series of shaking table tests on BFJs of a multicomponent system, demonstrated the effectiveness of the proposed monitoring systems in detecting hazardous conditions and, thus, their potential use in conjunction with safety barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号