首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this paper, an experimental investigation of the curved surface-straight edge hemming process is presented. Because hemming is the last stage of automotive panel forming operations, it directly influences the product surface, fitting, and joining qualities. Dimensional accuracy and precision in shape are two major concerns of hemmed parts, and these concerns are usually influenced by a large number of material, geometrical, and process factors. Planned experiments have been carried out according to a fractional factorial design method. Through regression analysis of the experimental results, the hemming quality indices, such as creepage, recoil, and radial springback, as well as hemming loads, can be expressed as a weighted sum of the input variable effects. In addition, the magnitude of each effect can be ranked from the most to the least significant. Using this information, hemming design guidelines can be developed for the optimization of hemming processes.  相似文献   

2.
Prediction and minimization of hemming defects are critical to the final quality of automobile products. In this paper, finite element analysis (FEA) is employed to simulate flat surface-straight edge hemming operations. Numerical simulations are conducted on the most representative points selected using a computer experiment design method, which involves orthogonal Latin hypercube sampling and response model building. A novel approach of selecting combined parameters as input factors from engineering analysis is proposed. The response surface models (predictors) obtained can capture the fundamental mechanism of the hemming process. The optimization method is developed based on the predictors instead of on time-consuming FEA simulations.  相似文献   

3.
This paper reports the development of a thermo-physical model for die-sinking electric discharge machining (EDM) process using finite element method (FEM). Numerical analysis of the single spark operation of EDM process has been carried out considering the two-dimensional axi-symmetric process continuum. The analysis is based on more realistic assumptions such as Gaussian distribution of heat flux, spark radius equation based on discharge current and discharge duration, latent heat of melting, etc., to predict the shape of crater cavity and the material removal rate (MRR). Using the developed model, parametric studies were carried out to study the effect of EDM process parameters such as discharge current, discharge duration, discharge voltage and duty cycle on the process performance. Experimental studies were carried out to study the MRR and crater shapes produced during actual machining. When compared with the reported analytical models, our model was found to predict results closer to the experimental results. The thermo-physical model developed can further be used to carry out exhaustive studies on the EDM process to obtain optimal process conditions.  相似文献   

4.
An experimental study is described in which active drawbead technology is used to attempt to optimize the sheet metal forming process. Oval AA 6111-T4 panels were drawn in a series of tests using various drawbead trajectories to establish the feasibility of the approach. The selection of drawbead trajectory was shown to have a dramatic effect on maximum attainable draw depth at fracture. Increasing drawbead penetration from zero to 5 mm in the early stages of the drawing process and retracting midway through the draw resulted in a 40% increase in draw depth compared to using a fixed 5 mm penetration. In the second part of the investigation, active drawbead technology was used to study its effect on highly nonsymmetric panel forming. Drawing limit curves in terms of drawbead depth versus blankholder forces (BHF) were plotted, and different drawbead trajectories were tested to determine an optimal drawbead trajectory scheme. A corresponding finite element model was also created. The results of strain path analysis successfully support the experiments.  相似文献   

5.
An experimental program of a novel wire manufacturing process known as dieless drawing has been conducted. The process has the capability to effect a reduction in the diameter of a wire without the use of conventional wire drawing dies. Reduction in diameter is achieved by heating the wire, which is mechanically loaded parallel to its longitudinal axis, to a temperature that initiates plastic deformation. Both mathematical and finite element (FE) modeling of the process have been undertaken. An analysis of the wire deformation is presented and discussed. The maximum reduction in diameter achieved, effect of drawing velocity, temperature, and uniformity of resulting wire diameter are investigated. The mechanics and operational features of the experimental machine manufactured to facilitate the experimental program of dieless drawing are described. The mathematical model presented can be used to describe the occurrence of deformation during the process. This model has been validated by experiments carried out on the wire drawing machine. The primary observation from the experimental program was that uniformity of wire diameter after dieless drawing decreased with an increase in reduction ratio. Results obtained from the experimental work confirm that a complicated interdependence of the process parameters exists during the dieless drawing process.  相似文献   

6.
Electrohydraulic forming (EHF) is a high energy rate forming process in which the strain rate in the sheet metal can vary from 5 × 102 to 105 s−1 depending on various factors. Several mechanisms have been reported to cause an improvement in formability in EHF such as material deformation mechanisms, inertial effects and the dynamic impact of the sheet against the die. EHF is a complex high speed forming process and experimental work alone is not sufficient to properly understand this process. To understand the variation of some influential variables in EHF, electrohydraulic die-forming (EHDF) and free-forming (EHFF) of DP590 dual phase steel were simulated in ABAQUS/Explicit by considering the fluid/structure interactions. Three-dimensional finite element simulations were conducted by modelling the water with Eulerian elements with a view to investigating the effect of released energy on the sheet deformation profile history, strain distribution, loading path and damage accumulation type. The Johnson–Cook constitutive material model was used to predict the sheet behaviour and the parameters in this model were calibrated based on experimental test results available for DP590 at various strain rates. The Johnson–Cook phenomenological damage model was also used to predict the ductile failure (damage accumulation) in both EHDF and EHFF. Predicted final strain values and damage accumulation type showed good agreement with the experimental observations.  相似文献   

7.
目的:为减轻曲轴质量,对16缸V型柴油机的曲轴进行结构优化。方法:首先,按照柴油机真实的工作环境对曲轴单个曲柄的有限元模型进行边界条件和力的加载,求解获得最大应力及最大位移的数值及位置;然后,建立垂直曲柄中心截面的2D有限元模型,在等效加载的情况下应用ANSYS计算最大应力及位移,计算结果同三维模型进行比较,证明2D截面网格的计算合理性;最后,运用ANSYS PDS模块,基于蒙特卡洛抽样方法,对单位曲柄进行主要尺寸优化。结果:主轴颈直径150 mm、曲柄销直径125 mm、圆角半径4.5 mm时单曲柄质量降低3.37 kg,整个曲轴质量降低26.99 kg,到达优化的目的。结论:证明了二维模型替代三维模型的合理性以及运用蒙特卡洛法进行结构优化的可行性,为今后的曲轴优化提供了参考。  相似文献   

8.
为研究超级钢闪光对焊闪光阶段焊件的温度场分布 ,建立了轴对称有限元模型。运用单元死活技术解决闪光时液体过梁爆破引起物质烧损的模拟问题 ,提出了闪光焊过程中电热耦合作用的模拟方法。考虑单元死活的有限元分析结果与试验结果更加吻合 ,为选择和优化闪光焊焊接参数以及为闪光焊过程顶锻阶段的热力耦合过程的模拟提供了有效的分析手段  相似文献   

9.
梳理了船冰相互作用时冰载荷的研究方法,从理论分析法、试验方法和仿真模拟方法三个方向进行了分类综述。首先,阐述了理论分析法中直接计算法和概率法的原理和适用性,着重论述了直接计算法分别在总体冰载荷与局部冰载荷的应用。其次,重点介绍了试验方法中的室内模型试验和实尺度实测的研究成果和进展,并指出试验方法在海冰制备、设备环境等方面的研究难点。然后,比较分析了仿真模拟方法中的有限元法和离散元法,简述了各自的优缺点与适用范围,认为有限元法在分析结构失效、断裂等过程中有一定的优势,但对冰的破碎过程的模拟则不如离散元法。最后,讨论总结了船冰相互作用时冰载荷研究方法发展趋势和存在的问题,为领域学者提供一定的参考。  相似文献   

10.
Unsatisfactory corrosion resistance is one of the major disadvantages of magnesium alloys that impede their wide application. Microstructural changes, especially grain sizes, of Mg alloys have significant influence on their corrosion resistance. Cryogenic machining was reported to effectively induce grain refinement on Mg alloys and has a potential to improve their corrosion resistance. It is important to model these changes so that proper machining conditions can be found to enhance the corrosion rate of Mg alloys. In this paper, a preliminary study was conducted to model the microstructural changes of AZ31B Mg alloy during dry and cryogenic machining using the finite element (FE) method and a user subroutine based on the dynamic recrystallization (DRX) mechanism of Mg alloys. Good agreement in terms of grain size and affected layer thickness was found between experimental and predicted results. A numerical study was conducted using this model to investigate the influence of rake angle on microstructural changes after cryogenic machining.  相似文献   

11.
This paper presents a novel 3D finite element model for the radial forging process with consideration of mandrel. As different with the previous works, the proposed model captures more accurately the features of the radial forging process. The proposed model is validated. With the proposed model, a comprehensive analysis of the deformation for the tube is presented. The contributions of the present work are: (1) a full 3D finite element model which captures more features of the radial forging process than the models in literature, (2) a proof that a full 3D finite element model is needed, (3) a proof of the effectiveness of the spring bar in stabilizing the contact between the hammer die and work-piece, and (4) the spindle speed has little effect on forging load. Finally, this model can be well used for the analysis and comprehensive understanding of the radial forging process and optimization of the process in future.  相似文献   

12.
A comprehensive modeling approach to link machine dynamics, deposition, and substrate kinematics in an electron beam physical vapor deposition (EB-PVD) is presented in this paper. The machine dynamics in EB-PVD process are captured by finite element models, resulting in the prediction of evaporation rate and vapor distribution. The deposition process is modeled using the level set method, which is one of the computational techniques for tracking topographic evolution. The proposed simulation model is implemented in Matlab and is compared with experimental results published by other researchers. Results indicate that the proposed simulation model can be used to predict microstructure features such as zigzag and helical columnar shapes. The pitch of a zigzag microstructure can be predicted within 20% at the 0.3 to 6 μm level for Yttira-stabilized Zirconia (YSZ) coating.  相似文献   

13.
目的 探究失效模式对加筋板极限承载能力的影响,并提出加筋板极限承载能力预报方法。方法 利用非线性有限元法,对某典型船体加筋板模型进行分析。考虑加筋柔度与甲板柔度2种主要影响因素,分析加筋板的破坏机理,明确不同失效模式下甲板柔度与加筋柔度对加筋板极限承载能力的影响规律,并提出不同失效模式下加筋板极限承载能力的经验公式。结果 甲板柔度一定时,随着加筋柔度的增加,加筋板的破坏模式由板与加筋的局部屈曲,变为板格的局部屈曲,最后演变为加筋板的整体梁柱屈曲。板格宽度较低时,随着加筋高度的增加,加筋板的破坏模式会由梁柱屈曲变为板格屈曲;板格宽度较大时,不同加筋高度的加筋板破坏模式均为板格屈曲。不同失效模式下,加筋板的载荷位移曲线也呈现出不同的趋势。结论 加筋柔度与甲板柔度二者之间的数量关系会导致加筋板呈现出不同的失效模式,此时二者对加筋板极限承载能力的影响规律会有所不同。此外,在设计阶段,需保证加筋与甲板的刚度匹配,避免出现材料利用率过低的现象。  相似文献   

14.
目的 探索结合有限元和闭环随机振动控制方法搭建的随机振动虚拟试验系统是否可信,以及其限制条件,并明确下一步的工作方向。方法 搭建虚拟振动,并获得虚拟试验结果,并和实物试验结果进行比对。分别搭建随机振动控制仪模型和振动系统有限元模型,再组合成整个闭环随机振动虚拟试验系统。对振动台、夹具、产品进行有限元建模后,再根据模态试验结果对其修正。振动台、夹具、产品的有限元模型修改到位后,组合成振动系统有限元模型,振动系统有限元模型联合控制仪模型,构建闭环随机振动虚拟试验系统,并将虚拟试验结果和实物试验结果进行比对。结果 在400 Hz之前的低频段,虚拟试验结果和实物试验结果的一致性较好。结论 这种方法搭建的虚拟振动系统,在400 Hz前的低频段,可信度较好。  相似文献   

15.
采用逐点增量弯曲的方法对网格式带筋整体壁板进行了试验研究,并进行了有限元模拟。研究表明:采用增量压弯成形工艺可以成形出具有一定曲率外形的整体壁板;压弯过程中蒙皮始终处于弹性变形阶段,筋条既有弹性变形产生,又有塑性变形产生;压下量达到一定值时,塑性变形的比率急剧增加。  相似文献   

16.
微动接触应力影响因素研究   总被引:3,自引:2,他引:1  
采用ABAQUS软件建立了圆柱/平面接触的铝合金微动疲劳结构有限元模型,运用该模型将计算的应力值与解析解进行比较,结果相当吻合,证明了所建有限元模型及算法的有效性。通过分析得到了不同影响因素下接触应力的分布规律。结果表明,最大正应力随压头半径的增加而降低,随接触压力的增加而成比例地增加;表面拉应力在粘着区内随压头半径的增加而增加,随接触载荷的增加而降低;参数Q/(fP)对正应力和表面拉应力没有影响,各参数对剪应力的影响因接触区域不同而有较大的差别。  相似文献   

17.
目的研究提高飞行器结构地面试验有效性的途径。方法计算同一被试件结构在飞行状态和地面试验状态下的有限元模型,测量地面试验状态下的模态以验证有限元模型的正确性;计算各特征点(也可以是遥测点)在天地状态下的响应,用机器学习法获取各特征点的映射关系模型;基于该模型由飞行点响应(或遥测数据)确定出地面试验件对应点的响应,并用载荷反求法得到它们的等效载荷;最终确定施加在试验系统上的载荷。结果以细长体结构为例,所得到由其组成试验系统的有限元模型与实测模型之间的固有频率最大相对误差为6.76%,利用映射关系模型预测出对应点在飞行状态下的振动响应。确定了飞行状态下结构响应的特征点,由地面试验系统所对应的响应点反推出应施加的载荷为60 N。结论利用天地数值计算-地面试验验证联合法,无需在地面试验状态下刻意模拟飞行状态的边界条件,确定出所需要施加的载荷,从而提高了飞行器地面试验的有效性。  相似文献   

18.
The majority of the research activities in the area of warm forming are concentrated on demonstrating or simulating the improved formability associated with forming lightweight materials such as aluminum alloys at elevated temperatures. However, the ability to design the proper thermal management system within the forming tool is a critical aspect to delivering this technology as a viable, stable production alternative to traditional stamping. This work begins to address the thermal stability issues of this process by examining the impact of process cycle time on the parting surface temperature response. Cycle times of 10, 15, 30, and 300 s were evaluated using a reciprocating surface and a self-heated experimental block of 1020 steel fitted with resistance cartridge heaters. The presented results indicate that cycle time does not significantly impact the steady-state temperature response at the parting surface for a well-insulated die that has proper thermal management. Parting surface experimental results were compared to values obtained numerically and through the use of the novel thermal finite element analysis software PASSAGE/Forming®.  相似文献   

19.
目的研究汽车结构侧面主要承载部件的耐撞性,参考我国碰撞法规和ECE R95,根据国内某SUV汽车的参数和相关标准建立整车有限元模型和移动可变形壁障模型(MDB),对其进行数值模拟,为结构的优化设计提供参考。方法利用Hyper Mesh前处理将CAD模型转化为CAE有限元模型,输出k文件,并通过LS-DYNA大变形有限元仿真软件对其耐撞性进行计算。结果仿真结果显示,在汽车侧面碰撞过程中,B柱和车门等主要承载部件发生了较大的变形,B柱变形量为116.6 mm,车门的变形量为190 mm,其值符合标准要求,在碰撞结束后保证了足够的乘员空间。结论该车有较好的侧面耐撞性,且得出的碰撞数值模拟结果可为该车的结构设计提供参考。  相似文献   

20.
某军机整体壁板裂纹损伤强度评估研究   总被引:2,自引:0,他引:2  
用全机有限元模型模拟损伤部位的局部位移和力边界条件,对机翼整体壁板高应力区的裂纹型损伤分析,研究了不同损伤尺寸对整体壁板强度的影响,给出损伤尺寸与残余过载、残余强度系数的关系,结论对外场评定战伤飞机损伤程度提供依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号