共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of Manufacturing Processes》2014,16(2):241-247
A rotating anvil similar to a pinless friction stir welding (FSW) tool can be applied to friction stir spot welding (FSSW) of thin metal plates. FSSW is a solid-state joining process that is currently being used by automotive manufacturers as an alternative to rivets and traditional resistance spot welding. The principal detractor of this process is the keyhole left by pin extraction, which can be detrimental to the weld strength. A pinless tool can be used to eliminate the keyhole. However, this approach is limited to joining thin sheet (≤1 mm). Using a rotating anvil with the FSSW process permits the joining of thicker cross sections, improves the mechanical strength of the spot weld and reduces the reaction forces on the spot welding frame. A numerical model of the process, tensile shear tests and macrosection analysis are used to evaluate the spot welds.Macrosection and numerical analysis reveals that the material flow between the pinless tool and rotating anvil is complex and unique to this process. It has been found that the use of a rotating anvil for FSSW is a viable means to create quality spot welds in thicker weldments. 相似文献
2.
Numerical simulation of residual stresses for friction stir welds in copper canisters 总被引:1,自引:0,他引:1
In an attempt to map the residual stress distributions after friction stir welding of copper canisters, a three-dimensional thermo-mechanical model has been formulated by coupling heat transfer and elasto-plasticity analyses. The transient temperature field around the tool is simulated by a moving heat source. The simulation shows that the residual stress distribution in a thick-wall copper canister is sensitive to the circumferential angle and asymmetrical to the weld line. Both tensile and compressive stresses emerge along the weld line and its vicinity. The maximum tensile stress appears in the circumferential direction on the outer surface. The maximum tensile stress, whether it is predicted by the finite element method or measured by the hole-drilling technique and the X-ray diffraction method, does not exceed 50 MPa in general. 相似文献
3.
Simultaneous measurement of the tool torque, traverse force and axial force during friction stir welding process is of great significance to the understanding of the underlying process mechanism and the optimizing of the process parameters. Different from the traditional measurement methods using load cell or rotating component dynamometer, an indirect but economical methodology is used in this study for the simultaneous measurement of the traverse force, axial force and tool torque by monitoring the output torques of the servo motors and main spindle three-phase AC induction motor inside the FSW machine. The values of the traverse force, axial force and tool torque are determined under different welding conditions, and the influencing factors are examined. The measured results in friction stir welding of AA2024-T4 aluminum alloys at different combinations of tool rotation speed and welding speed lay foundation for process optimization. 相似文献
4.
《Journal of Manufacturing Processes》2014,16(1):149-155
Flexural strength is one of the main criteria in evaluation of the mechanical properties of polymeric joints. The flexural strength of thermoplastics, such as high density polyethylene (HDPE) sheets, is influenced by friction stir welding parameters. The determination of the welding parameters plays an important role in the weld strength. In the present study, the response surface method (RSM) was used as a statistical design of experiment technique to set the optimal welding parameters. The designed tool was consisted of a rotating pin, a stationary shoulder (shoe) and a heating system inside shoe. Rotational speed of the pin, tool traverse speed and shoe temperature were considered as varying parameters. Obtained results show a significant relationship between considered properties and processing parameters through an analysis of variance (ANOVA) study and the response surface method. It was found that welding at a high level of rotational speed and a lower level of tool travel speed increases weld flexural strength by reducing size of defects. 相似文献
5.
《Journal of Manufacturing Processes》2014,16(2):296-304
The objective of this research is to investigate the mechanical properties including bonding, tensile strength, and impact resistance of pure copper welded using friction stir welding (FSW) method and compare them with that of tungsten inert gas (TIG) welding. Micro-hardness tests are performed on pure copper, TIG welded copper and FSW welded copper to determine the effect of heat on the hardness of welded coppers. Tensile strength tests and notch tensile strength tests are performed to determine the mechanical properties of different weld process.In this experiment, it is found that the notch tensile strength and the notch strength ratio for FSW (212 MPa, 1.10) are significantly higher than those (190 MPa, 1.02) of TIG welding. For the impact tests, the weld zone and heat-affected zone energy absorption values for FSW (2.87 J, 2.25 J) are higher than those (1.32 J, 0 J) of TIG welding. XRD tests are performed to determine components of copper before and after welding process for TIG and FSW. 相似文献
6.
In this study a novel variant of friction stir processing was developed for producing of polymer metal surface or bulk composites in order to enhance the mechanical, electrical and thermal properties. For this purpose, a novel tooling system was designed consists of a rotating pin, a stationary shoulder and a heating system located inside the shoulder. In present paper, for preliminary study high-density polyethylene and copper powder was selected as polymeric matrix and metallic additive, respectively. Surface quality, microstructure, ultimate tensile strength and the modulus of elasticity were determined for each prepared sample. From experimental tests, it was found that this approach is an efficient method for producing of polymer–metal composites. 相似文献
7.
Sladjan Lazarevic Scott F. Miller Jingjing Li Blair E. Carlson 《Journal of Manufacturing Processes》2013,15(4):616-624
Mass reduction of automotive body structures is a critical part of achieving reduced CO2 emissions in the automotive industry. There has been significant work on the application of ultra high strength steels and aluminum alloys. However, the next paradigm is the integrated use of both materials, which poses a challenge of how to join the dissimilar materials. Friction stir forming is a new manufacturing process for joining dissimilar materials. The concept of this process is stir heating one material and forming it into a mechanical interlocking joint with the second material. In this research the process was experimentally analyzed in a position controlled robotic friction stir welding machine between aluminum and steel workpieces. New tool geometries were evaluated toward the goal of optimizing joint strength. The significant process parameters were identified and their optimized settings for the current experimental conditions defined using a design of experiments methodology. A scanning electron microscope was used to characterize the bonding and joint structure for single and multi-pin configurations. Two failure modes, aluminum sheet peeling and bonding delamination, i.e. braze fracture, were identified. It was found that the presence of zinc coating on the steel and overall joint geometry greatly affected the joint strength. The aluminum–zinc braze joint appears to be the largest contributor to joint strength for the single-pin joint configuration. The multi-pin geometry enabled a distribution of load to the four pins following fracture of the braze for increased joint toughness and ductility. Thus, the FSF method has been shown to exhibit potential for joining of aluminum to steel. 相似文献
8.
目的研究铝锂合金搅拌摩擦焊焊缝在大气环境中的腐蚀行为。方法采用电化学极化法、质量增加法、扫描电子显微镜、三维体式显微镜几种不同的表征手段对铝锂合金搅拌摩擦焊焊缝在模拟海洋大气环境中的腐蚀行为进行研究。结果焊缝部位存在较为严重的应力腐蚀开裂现象,腐蚀电位比基体部位负移约0.05 V,腐蚀速率比一般基体部位明显增大。结论搅拌摩擦焊虽具有较多优点,在其他领域得到一定应用,但针对铝锂合金在海军飞机方向的应用存在缺陷,不能直接裸露使用。 相似文献
9.
《Journal of Manufacturing Processes》2014,16(2):276-283
The automotive industry is developing designs and manufacturing processes for new generations of electric motors intended for use in hybrid and electric vehicles. There is interest in replacing the aluminum traditionally used in induction motor rotors with copper to improve motor capability. This paper focuses on solid-state welding to join copper end rings to copper spokes in the fabrication of copper rotors. Inertia friction welding was explored to examine weldability of these copper components. A better understanding of inertia welding characteristics will help the advancements in its application for induction rotors. The limitations of this application are discussed. 相似文献
10.
《Journal of Manufacturing Processes》2014,16(1):74-85
This article introduces the basic principles of plasma arc welding (PAW) and provides a survey of the latest research and applications in the field. The PAW process is compared to gas tungsten arc welding, its process characteristics are listed, the classification is made, and two modes of operation in PAW, i.e., melt-in and keyhole, are explained. The keyhole mechanism and its influencing factors are introduced. The sensing and control methodologies of the PAW process are reviewed. The coupled behaviors of weld pool and keyhole, the heat transfer and fluid flow as well as three-dimensional modeling and simulation in PAW are discussed. Finally, a novel PAW process variant, the controlled pulse keyholing process and the corresponding experimental system are introduced. 相似文献
11.
12.
13.
沈阳市水污染物排放总量控制的研究 总被引:1,自引:0,他引:1
以沈阳市为实例,详细地介绍了城市水污染物排放总量控制的系统结构,探讨和论述了总量控制因子和总量控制目标的制定原则、方法,实现总量控制目标的措施,总量的考核与管理. 相似文献
14.
钱满发 《安全.健康和环境》2007,7(11):35-36
通过某检修安装企业从事焊接作业人员职业健康检查.对肺功能及X线高仟伏胸片检查结果进行分析评价,探讨电焊烟尘对作业人员肺部X线改变和肺通气功能的影响,提出电焊工尘肺的预防措施. 相似文献
15.
16.
太湖水底摩擦系数的估算 总被引:1,自引:0,他引:1
利用1992年8月至1992年10月在太湖马山地区测得的风,浪资料,采用浅水浪公式对太湖水底摩擦系数进行了估算,估算值为0.0025。 相似文献
17.
18.
采用安东帕流变仪对不同温度下含油污泥的流变性质进行测量,并通过拟合幂律方程得到相关流变参数。基于其流变特性,以空气-含油污泥为介质采用数值模拟方法研究了含油污泥温度以及反应器结构对气液两相流场、局部气含率分布以及通气搅拌功率的影响。结果表明:随着含油污泥温度升高,搅拌桨对液相扰动范围趋广,气含率分布趋于分散,气液两相混合程度愈加均匀,通气搅拌功率下降明显;对比4种不同反应器结构,双层桨分散性能最佳,液相平均流速最高,速度均匀度指数最低,在通气搅拌功率适宜的情况下其混合性能最佳。 相似文献
19.
《Journal of Manufacturing Processes》2014,16(1):26-55
Welding is a fabrication process to join two different materials. Among the many welding processes, the arc and laser welding processes are the most widely used. Great effort is required to understand the physical phenomena of arc and laser welding due to the complex behaviors which include liquid phase, solid phase and, gas phase. So it is necessary to conduct numerical simulation to understand the detailed procedures of welding. This paper will present the various numerical simulation methods of the arc welding processes such as arc plasma, gas tungsten arc welding, gas metal arc welding, laser welding, and laser–arc hybrid welding. These simulations are conducted by the finite element method, finite differential method and volume of fluid method to describe and analyze the various welding processes. 相似文献