首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Increasing use of poly crystalline diamond (PCD) inserts as cutting tools and wear parts is vividly seen in automobile, aerospace, marine and precision engineering applications. The PCD inserts undergo series of manufacturing processes such as: grinding that forms the required shape and polishing that gives a fine finish. These operations are not straight forward as PCD is extremely resistant to grinding and polishing. Single crystal diamond can easily be polished by choosing a direction of easy abrasion, but polishing a PCD imposes serious difficulties as the grains are randomly oriented. Prior research on polishing of PCD inserts includes electro discharge grinding (EDG), dynamic friction polishing and grinding by a vitrified bonded diamond wheel. The surface textures of PCD produced using an EDG process often contains: micro cavities, particle pullout, micro-grooves, chipped edges, cracks and gouch marks. While applying the dynamic friction polishing method the PCD material undergoes phase transformation and hence increased polishing rate was apparently seen. However the phase transformation of PCD deteriorates the strength of the insert. Furthermore the inserts produced using the dynamic polishing method often exhibits cracks, chip off and edge damage while using as a cutting tool. Therefore, a new method “aero-lap polishing” was attempted as it applies controlled amount of impinging force by which the surface damage can be significantly reduced. The study did establish an improvement of surface finish of PCD from Ra = 0.55 μm, Rt = 4.5 μm to Ra = 0.29 μm, Rt = 1.6 μm within 15–25 min of polishing time along with significant reduction in surface defects.  相似文献   

2.
Stellite alloys, which have been widely used in the aerospace, automotive and chemical industries, are hard-to-cut cobalt-based materials. This study investigates the machinability of stellite 12 alloys with uncoated carbide cutting tool grades YG610 (K01-K10) and YT726 (K05-K10/M20) and SANDVIK coated carbide tool SNMG150612-SM1105 under dry cutting conditions. Both wear mechanisms and failure modes of the uncoated and coated tools were investigated with turning experiments. The results show that the coated tool SM1105 remarkably outperforms the uncoated tools; and the cutting tool YG610 generally outperforms YT726 under all cutting conditions. Built-up edge was found with YG610 in some cutting conditions and with SM1105 at cutting speed of 16 m/min. Tool surface burning marks were observed on YT726 at relatively higher cutting speeds. Wear develops slowly with coated tools SM1105 until VB reaches 0.2 mm at most conditions (except at v = 43 m/min, f = 0.25 mm/r). Excessive tool flank typically resulted in tool breakage at the cutting edge for uncoated tools. Abrasive and adhesive wear of cutting tools were observed at low cutting speeds while diffusion and chemical wear occurred at higher cutting speeds.  相似文献   

3.
This paper describes the characteristics and the cutting parameters performance of spindle speeds (n, rpm) and feed-rates (f, mm/s) during three interval ranges of machining times (t, minutes) with respect to the surface roughness and burr formation, by using a miniaturized micro-milling machine. Flat end-mill tools that have two-flutes, made of solid carbide with Mega-T coated, with 0.2 mm in diameter were used to cut Aluminum Alloy AA1100. The causal relationship among spindle speeds, feed-rates, and machining times toward the surface roughness was analyzed using a statistical method ANOVA. It is found that the feed-rate (f) and machining time (t) contribute significantly to the surface roughness. Lower feed-rate would produce better surface roughness. However, when machining time is transformed into total cut length, it is known that a higher feed-rate, that consequently giving more productive machining since produce more cut length, would not degrade surface quality and tool life significantly. Burr occurrence on machined work pieces was analyzed using SEM. The average sizes of top burr for each cutting parameter selection were analyzed to find the relation between the cutting parameters and burr formation. In this research, bottom burr was found. It is formed in a longer machining time compare the formation of top burr, entrance burr and exit burr. Burr formation is significantly affected by the tool condition, which is degrading during the machining process. This knowledge of appropriate cutting parameter selection and actual tool condition would be an important consideration when planning a micro-milling process to produce a product with minimum burr.  相似文献   

4.
The surface characteristics of a machined product strongly influence its functional performance. During machining, the grain size of the surface is frequently modified, thus the properties of the machined surface are different to that of the original bulk material. These changes must be taken into account when modeling the surface integrity effects resulting from machining. In the present work, grain size changes induced during turning of AA7075-T651 (160 HV) alloy are modeled using the Finite Element (FE) method and a user subroutine is implemented in the FE code to describe the microstructural change and to simulate the dynamic recrystallization, with the consequent formation of new grains. In particular, a procedure utilizing the Zener–Hollomon and Hall–Petch equations is implemented in the user subroutine to predict the evolution of the material grain size and the surface hardness when varying the cutting speeds (180–720 m/min) and tool nose radii (0.4–1.2 mm). All simulations were performed for dry cutting conditions using uncoated carbide tools. The effectiveness of the proposed FE model was demonstrated through its capability to predict grain size evolution and hardness modification from the bulk material to machined surface. The model is validated by comparing the predicted results with those experimentally observed.  相似文献   

5.
Polishing by laser beam radiation is a novel manufacturing process to modify the initial surface topography in order to achieve a desired level of surface finish. The performance of laser polishing (LP) is determined by an optimum combination of several key process parameters. In this regard, the overlap between two successive laser beam tracks is one of the important LP process parameters, which has a significant effect over the final surface quality. In the current study, influence of overlap between the laser beam tracks on surface quality was experimentally investigated during the laser polishing of AISI H13 tool steel. Surface areas were polished by using four different overlap percentages (e.g. 80%, 90%, 95%, and 97.5%) while applying the same energy density. The improvement of surface quality was estimated through the analysis of line profiling surface roughness Ra, areal topography surface roughness Sa, and material ratio function. Also, individual components of the surface quality, e.g. waviness and roughness, and their evolution during LP were statistically analyzed using the power spectral density and the transfer functions. Finally, as an example of the best achieved LP result, flat surface area was polished using optimum set of the process parameters improving surface quality by 86.7% through the reduction of an areal topography surface roughness Sa from 1.35 μm to 0.18 μm.  相似文献   

6.
The study focuses on the efforts for minimization of burr formation and improvement of hole surface roughness in micro through-hole machining. It deals with the development of micro compound tool which is consisting of a micro flat drill as the drilling part and a micro diamond-electroplated-grinding part for hole finishing. The finishing diameters of each drilling and grinding parts of the fabricated micro compound tool are 90 μm and 100 μm, respectively. The study focuses mainly on the effect of drill point angle and ultrasonic vibration applied during micro hole machining to the hole entrance and exit burrs formation. The used workpiece is made of stainless steel (SUS304) with a thickness of 100 μm. From the experiment, it was found that the tool having drill point angle of 118° resulted in a smaller burr formation although hole machining was conducted for 600 holes. Furthermore, the application of ultrasonic vibration during hole machining could improve the performance of the developed micro compound tool and decreased the burr size, especially the exit burr.  相似文献   

7.
Maintaining a reasonably low cutting tool wear when producing forming tools is a general challenge in the development of new forming tool materials. The tool life of a hot forming tool steel (H13) has been significantly improved by reducing its Si-content from 1.0 to 0.06 wt.%. However, this modified H13 (MH13) also displays a reduced cutting tool life due to higher cutting forces and a stronger tendency to form built up layers (BUE) on the cutting edge. This paper explains why.Gleeble tests of MH13 revealed a significantly higher flow stress in the 820–900 °C temperature interval in MH13 compared to H13. Thermo-Calc simulations showed that when reducing the Si-content from 1.0 to 0.06 wt.% the initial temperature for ferrite-to-austenite transformation (A1) was reduced from 900 °C to 820 °C. Knowing that austenite has totally different mechanical and thermal properties than ferrite, the difference in A1 between the two steels explains the higher cutting forces and higher tendency for BUE-formation. The conclusion is that the difference in machinability between H13 and MH13 is primarily related to their difference in A1.An attempt was also made to find a new tool material composition that can combine the wear resistance of MH13 and the good machinability of H13. Thermo-Calc simulations were performed with slightly modified alloying content without changing its properties as a good forming tool material, with the aim to increase A1. For instance, reducing the Mn content from 0.5 to 0.05 wt.% proved to increase A1 from 820 to 850 °C.  相似文献   

8.
To characterize the inner surface of the fuel injector nozzle holes drilled by EDM and water jet guided laser drilling (Laser Micro-Jet) a specifically conceived scanning probe microscopy technique with true non-contact operating mode was used. A difference in morphology of the drilled surfaces is evident from the acquired surface topography along the hole axis for the two compared drilling techniques. Results showed that the surface texture can be characterized by (i) maximum peak-to-valley distance and (ii) periodicity. Acquired maps confirm that electro-eroded surfaces are an envelope of craters randomly distributed with total excursion up to 1.7 μm with a crater size of 15 μm. While, the efficient melt expulsion and immediate cooling of water jet guided laser generates a peak to valley distance of 800 nm with a periodicity of 18 μm. Average Rq derived from the measured cylindrical surfaces was 450 nm and 150 nm for EDM and Laser Micro-Jet, respectively. Water jet guided laser drilling has proved to be a reliable alternative to EDM from the point of view of repeatability of the results and surface quality to facilitate the atomization of the fuel jet.  相似文献   

9.
The application of controlled, low-frequency modulation (~100 Hz) superimposed onto the cutting process in the feed-direction – modulation-assisted machining (MAM) – is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining compacted graphite iron (CGI) at high machining speeds (>500 m/min). The tool life is at least 20 times greater than in conventional machining. This significant reduction in wear is a consequence of the multiple effects realized by MAM, including periodic disruption of the tool–workpiece contact, formation of discrete chips, enhanced fluid action and lower cutting temperatures. The propensity for thermochemical wear of CBN, the principal wear mode at high speeds in CGI machining, is thus reduced. The tool wear in MAM is also found to be smaller at the higher cutting speeds (730 m/min) tested. The feed-direction MAM appears feasible for implementation in industrial machining applications involving high speeds.  相似文献   

10.
In West Africa policies for prescribed early fire and livestock grazing in the savanna woodlands are rarely based on long-term experimental studies. The inherently different management characteristics and their effects on the vegetation dynamics make landscape degradation a contentious issue. The effects of grazing intensity were investigated by a comparison of non-grazed areas, lightly grazed areas, moderately grazed areas, heavily grazed areas and very heavily grazed areas that received one of two fire treatments: early burning and fire protection in a long-term 12-year study. The parameters assessed reflected changes in herbaceous plant cover, biomass as well as soil physical and hydrological properties. The main findings were by and large specific for the grazing level. This supports the argument for devolution of management responsibility to the local level where there is indigenous site-specific knowledge but at the same time insufficient management capacity.A comparison of composite soil samples taken at a depth of 0–10 cm did not differentiate significantly between treatments. This is probably because the composite soil sampling procedure hid the properties of the top first few centimeters. Grazing pressure had a tendency to reduce total above ground biomass (p = 0.081). This was related to increased biomass removal and the trampling pressure (static load) exerted by the animals. The infiltration measurements indicated that the deleterious impact of cattle trampling increased as stocking rate increased. Livestock grazing significantly (p = 0.038) lowered the infiltrability. Prescribed early fire had a tendency (p = 0.073) to reduce the soil water infiltration rate. The subplots subjected to prescribed burning had a lower steady state infiltration rate compared to unburnt areas (means of 49.2 ± 27.5 mm h−1 versus 78 ± 70.5 mm h−1 for burnt and unburnt subplots, respectively). A partial least squares projection to latent structures showed that 34% of the steady state infiltrability was explained by the stocking rate and soil organic matter. Also all soil characteristics were significantly connected to steady state infiltrability suggesting that they are related to the soil hydrological response to trampling.From a management perspective, adoption of a short duration grazing system should avoid high stocking rates because they may adversely affect soil infiltrability, increase susceptibility to erosion in the savannas and decrease biomass productivity.  相似文献   

11.
Titanium aluminide intermetallics offer an attractive combination of low density and good oxidation, corrosion and ignition resistance with unique mechanical properties. In this study two series of machining tests are designed. Firstly the powder mixed electrical discharge machining (PMEDM) of γ-TiAl by means of different powders such as aluminum, chrome, silicon carbide, graphite and iron is performed to investigate the output characteristics of surface roughness and topography, material removal rate (MRR), electrochemical corrosion resistance of machined samples and also the machined surfaces are investigated by means of EDS and XRD analyses. Secondly after selection the aluminum powder as the most appropriate kind of powder, the current, pulse on time, powder size and powder concentration are changed in different levels for overall comparison between EDM and PMEDM output characteristics. In the first setting of input machining parameters, aluminum powder improves the surface roughness of TiAl sample about 32% comparing with EDM case and also aluminum particles with the size of 2 μm, in the second setting of input parameters lead to 54% enhancement of MRR comparing with EDM case. The electrochemical corrosion results show that, corrosion resistance of the samples which are machined by graphite and chrome powders respectively are about three and two times more than the sample which is machined without powder.  相似文献   

12.
In the present study, a 2-D finite-element method (FEM) thermal-fluid-stress model has been developed and validated for the twin roll casting (TRC) of AZ31 magnesium alloy. The model was then used to quantify how the thermo-mechanical history experienced by the strip during TRC would change as the equipment was scaled up from a laboratory size (roll diameter = 355 mm) to a pilot scale (roll diameter = 600 mm) and to an industrial scale (roll diameter = 1150 mm) machine. The model predictions showed that the thermal history and solidification cooling rate experienced by the strip are not affected significantly by caster scale-up. However, the mechanical history experienced by the strip did change remarkably depending on the roll diameters. Casting with bigger rolls led to the development of higher stress levels at the strip surface. The roll separating force/mm width of strip was also predicted to increase significantly when the TRC was scaled to larger sizes. Using the model predicted results, the effect of both casting speed and roll diameter was integrated into an empirical equation to predict the exit temperature and the roll separating force for AZ31. Using this approach, a TRC process map was generated for AZ31 which included roll diameter and casting speed.  相似文献   

13.
The demand for precision surgical knives is enormous. Currently, diamond knives have been the preferred choice among surgeons for use in precision surgeries, owing to the extreme hardness of diamond and the sharpness that can be achieved in single crystal diamond blades, but material and processing costs are high. Bulk metallic glass (BMG) has the potential to be an economically viable material of similar performance for use in precision surgical knives. To this end, a novel hybrid manufacturing process integrating thermally assisted micro-molding and micro-drawing has been developed for producing BMG surgical-grade knife blade cutting edges with edge radii <50 nm. A hybrid process testbed was designed and used to successfully run tests over a range of the key process variables. Through this testing the deformation of BMG under different strain rates and temperatures was studied in terms of the quality of edge formation. The hybrid process was shown to be capable of producing cutting edges of radius at or below 100 nm.  相似文献   

14.
Tool life has been a vital issue in machining titanium alloys. Recently, an atomization-based cutting fluid (ACF) application has been found to be an effective approach for cooling and lubrication in micromachining operations. In this study, an ACF spray system is developed for macro-scale turning of Ti–6Al–4V. The spray system is designed to minimize interaction between the fluid droplets, and the gas nozzle to control the divergence of the fluid droplets. Experiments are conducted to study the effect of five specific ACF spray parameters including fluid flow rate, spray distance, impingement angle, and type and pressure level of the droplet carrier gas on cutting forces, tool life, and chip characteristics. It has been observed that the combination of lower pressure (150 psi) air-mixed CO2 with a higher flow rate (20 ml/min) and a larger spray distance (35 mm) produces a significantly longer tool life and broken chips. The results also reveal that the ACF spray system can extend tool life up to 40–50% over flood cooling.  相似文献   

15.
A mathematical model was developed to estimate the weight percent of diamond abrasive particles incorporated in nickel binder matrix during abrasive microtool fabrication by pulse-plating process. The proposed model is based on the hypothesis that, embedment of an inert micro abrasive diamond particle on the substrate will only occur when a few nickel ions from the adsorbed ionic cloud are chemically reduced at the cathode by hydrogen ions present in the diffusion layer. Experimental verification of the model developed was performed by pulse electroplating of diamond abrasive particles on tungsten micro tool shank using an in-house built experimental setup. The predictive model developed was found to estimate diamond abrasive content in nickel binder matrix within 1–7 wt% of experimental results for different pulse-plating conditions.  相似文献   

16.
This paper presents a study on the resource and environmental profile of leather for communicating to the consumers about the environmental burdens of leather products. The results indicate that significant environmental impacts were caused during the tanning and finishing of leather as well as the electricity production and transportation required in the life cycle. The use of fossil fuels in the production of energy has greater impact with increased emissions leading to about 15190 kg CO2 equivalent of global warming and about 73 kg SO2 equivalent of acidification while producing 100 m2 of leather for shoe uppers. Further resource use of 174 kg of coal, 6.5 kg of fuel oil, 17.4 m3 of water and 348 kg of chemicals of which about 204 kg are hazardous are consumed, and wastewater of about 17 m3, BOD of 55 kg, COD of about 146 kg, TDS of 732 kg and solid waste of about 1445 kg are generated during the life cycle for the production of 100 m2 of leather. The total solid waste generated is 1317 kg, out of which about 80% is biodegradable contributed by slaughtering, tanning and finishing stage, 14% is non-biodegradable contributed by tanning, finishing and electricity production stages and 6% is hazardous mainly from tanning and finishing stage of leather.  相似文献   

17.
This paper presents a new technology for minimizing the use of metalworking fluids (MWFs) during the machining process that is atomization-less and occupational friendly. Micro-flood (MF) technology utilizes direct contact between the cutting tool and the MWF without the interaction of a gas medium. Experiments were conducted in high volume mass production environment turning HSLA (high strength low alloy) SAE 070Y steel. Machining performance and total air mass particulates were investigated in dry machining, Near dry machining (NDM) via atomized spray mist and MF technology. Open-atmosphere air monitoring indicated that total mass particulates behaved in an almost linear fashion with respect to gas atomization pressure, whereas the MWF flow rate demonstrated logarithmic trends in NDM applications using an atomized spray. Nozzle orientations directed upward into the air also produced higher mg/m3 concentrations (such as flank) than chip and rake face orientations that were directed down. Greater separation existed at higher gas atomization pressures, MWF flow rates and by changing the MWF type. At extreme limits, nozzle orientation affected mg/m3 concentration as much as 4–5 mg/m3 for water-miscible MWFs and 15–22 mg/m3 for non-water-miscible MWFs. Tool-life performance varied greatly among MWF type and flow rate, and in all cases MF technology performed better than NDM using an atomized spray mist. Direct and consistent MWF penetration to cutting zone using MF technology lowered tool-wear on the average of 12–75% compared to NDM at the same MWF flow rate. Compared to dry machining, NDM improved tool-wear on the average by 20–243%. In one case, tool-wear performance was improved by 616% at 0.15 mm using MF technology compared to dry machining at a nominal 0.925 mm tool-wear. Overall, a large mass reduction of particulates can be achieved employing MF technology that would have been unrealistic for an open-atmosphere machining environment employing an atomized spray mist. On the average, MF technology can maintain a total air mass particulate of less than 0.4 mg/m3 in the occupational work zone using MWF flow rates up to 1260 ml/h, regardless of the MWF classification. Atomized spray mist applications are capable meeting the 5 mg/m3 OSHA limit if MWF flow rates are less than 160 ml/h, air pressures are less than 0.137 MPa (20 psi) using water-miscible MWFs and air pressures are less than 0.0344 MPa (5 psi) using non-water-miscible MWFs.  相似文献   

18.
A large volume of tanning wastewater was generated with a Cr3+ concentration of 3000–6000 mg/L. The prevailing method for Cr3+ recycle is NaOH precipitation, which is severely limited by the poor sedimentation of the sludge formed. Therefore, bridging cations, Ca2+ and Mg2+, and sonication were used to enhance the sedimentation of the precipitate. Microwave irradiation was employed to improve the re-dissolution of Cr-sludge for reuse. All alkalis effectively removed Cr3+ from the aqueous phase with a removal of higher than 99% and a recovery of ∼60%. The substitution of NaOH with CaO or MgO resulted in much less sludge and shorter sedimentation time. MgO also enhanced the purity and dewatering capability of the sludge. The best alkali was a mixture of CaO and MgO (4:1, by weight) to balance the cost and performance. COD and SS were removed in the process via sweeping by the precipitate with removal percentages of 47.6% and 86.3%, respectively. Two minutes sonication at 0.12 W/cm3 greatly accelerated the sludge sedimentation, cutting the settling time from 3 h to 1 h. Sonication did not alter the particle size or purity of the sludge. Microwave irradiation of 5 min increased the Cr recovery ratio from 60% to 80%.  相似文献   

19.
Proximity and connections to surface waters may play significant roles in determining impacts of manure spills. As occurred in many U.S. states, Minnesota adopted in 2000 more stringent regulations on Concentrated Animal Feeding Operations (CAFOs) including restrictions on siting new facilities near surface waters. The objectives of this study were to determine whether CAFO proximity to surface waters decreased following the siting restrictions and to evaluate implications of siting restrictions. Permit dates, locations, and distances to nearest surface water bodies for 111 west central Minnesota CAFOs were determined based on satellite imagery, historical records, and correspondence with regulatory officials. Average distance between surface waters and facilities permitted after 2000 was greater than for facilities permitted before 2000. The increase in average distance between CAFOs and public surface waters was significant for open water (1790 m, p = 0.03), but not for streams (280 m, p = 0.47). Decreased CAFO proximity to surface waters should benefit water quality, but after 2000 facilities continued to be permitted close to hydraulic connections not covered by the siting restriction. Comprehensive manure spill tracking and long term targeted water quality monitoring are needed to evaluate effectiveness of siting restrictions and other strategies for protecting surface waters from manure spills.  相似文献   

20.
Soil organic C (SOC) and total soil N (TSN) sequestration estimates are needed to improve our understanding of management influences on soil fertility and terrestrial C cycling related to greenhouse gas emission. We evaluated the factorial combination of nutrient source (inorganic, mixed inorganic and organic, and organic as broiler litter) and forage utilization (unharvested, low and high cattle grazing pressure, and hayed monthly) on soil-profile distribution (0–150 cm) of SOC and TSN during 12 years of pasture management on a Typic Kanhapludult (Acrisol) in Georgia, USA. Nutrient source rarely affected SOC and TSN in the soil profile, despite addition of 73.6 Mg ha?1 (dry weight) of broiler litter during 12 years of treatment. At the end of 12 years, contents of SOC and TSN at a depth of 0–90 cm under haying were only 82 ± 5% (mean ± S.D. among treatments) of those under grazed management. Within grazed pastures, contents of SOC and TSN at a depth of 0–90 cm were greatest within 5 m of shade and water sources and only 83 ± 7% of maximum at a distance of 30 m and 92 ± 14% of maximum at a distance of 80 m, suggesting a zone of enrichment within pastures due to animal behavior. During 12 years, the annual rate of change in SOC (0–90 cm) followed the order: low grazing pressure (1.17 Mg C ha?1 year?1) > unharvested (0.64 Mg C ha?1 year?1) = high grazing pressure (0.51 Mg C ha?1 year?1) > hayed (?0.22 Mg C ha?1 year?1). This study demonstrated that surface accumulation of SOC and TSN occurred, but that increased variability and loss of SOC with depth reduced the significance of surface effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号