首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 研究以金属作为基体的碳酚醛复合材料圆锥壳的动力学特性,基于模态实验建立复合材料参数优化识别方法。方法 通过建立金属基体复合材料圆锥壳结构的动力学模型,表征各层材料参数对结构动力学特性的影响。开展典型铝合金-环氧胶-碳酚醛圆锥壳自由模态实验,在模态实验结果基础上,采用数值仿真开展复合材料参数识别,并采用响应面优化法研究获得材料参数的全局最优解。最后,开展结构模态对复合材料参数的敏感性分析。结果 基于拉丁超立方抽样和多项式代理模型,建立了多层复合圆锥壳的高效代理模型。对于[0, 90]S铺层的复合材料圆锥壳结构,前5组模态频率参数对E11最敏感,对v23最不敏感,剪切模量的影响介于拉伸模量及泊松比之间。结论 建立了针对各向同性-正交各向异性材料组合的多层复合圆锥壳结构的动力学模型及参数识别方法,可为结构动力学设计提供参考。  相似文献   

2.
锥辊不均匀压下板带面内弯曲是一种省能、柔性、高效、精密局部连续塑性成形过程.在实验结果的基础上分析了锥辊辗轧状态对板带面内弯曲成形极限的影响,并对实验过程中出现的3种失稳起皱的情形进行了讨论.  相似文献   

3.
This paper introduces a thermally scanned material deposition control method for near-net shape manufacturing of metal parts by welding. To eliminate thermal distortion and the required intermediate-layer milling steps, and to control the material structure, plasma arc scan welding under infrared pyrometry sensing regulates the temperature field by providing in-process heat treatment of the part. In laboratory tests, the material is simultaneously deposited by a gas metal arc welding torch, with monitoring of the weld profile by two laser stripe profilometers. These sensors provide measurements of the bead width for its feedback control by modulation of the wire feed. To compensate for measurement delays, real-time prediction by a deposition model is employed, with its parameters identified during the process. Preview of the geometric surface irregularities in front of the deposition is used as feedforward to ensure the desired layer deposition patterns in adjacent beads. The performance of this bead-size control scheme is assessed experimentally on a robotic laboratory station, and applications of the thermally scanned material deposition technique are explored in rapid manufacturing of customized metal products.  相似文献   

4.
The material removal within different machining process can be performed in distinct modalities. One of the modality is based on the erosion phenomena. In this paper, theoretical model of abrasive jet machining based on erosion phenomenon is discussed. The material is removed from the surface due to erosion. In abrasive jet machining process, the output parameter is achieved by controlling various input parameters. This paper discusses the effects of various input parameters in abrasive jet machining (AJM) on the material removal rate (as the output parameter). The results presented in the paper are obtained from a theoretical study carried out with the help of mathematical model and computational technique. Theoretical investigation indicates that magnetic field, electric field and inhomogeneity in DC electric field have significant effect on metal removal by abrasive jet machining process.  相似文献   

5.
Laser forming, a novel manufacturing method for bending sheet metal first reported in 1985, has been investigated as an alternative to hot brake forming (industry standard) of titanium sheet parts for the aircraft industry. Laser forming involves scanning a focused or partially defocused laser beam over the surface of a titanium workpiece to cause localized heating along the bend line and angular deflection toward the beam. The main advantage that laser forming has over conventional brake forming is increased process flexibility. An experimental investigation of this process (primarily designed experiments) met the following objectives: identified the response variables related to change in geometry (bend angle) and material microstructure; characterized the influence of process variables (scanning speed, beam diameter, laser power) on these response variables; determined the degree of controllability over the process variables; and evaluated the suitability of laser forming for the aircraft industry (most important), all with respect to titanium sheet. It has been determined that laser forming with an Nd:YAG laser is a controllable, flexible manufacturing process for titanium sheet bending. Unfortunately, these advantages over traditional hot brake forming are overshadowed by the fact that, with regard to forming with titanium, laser forming is significantly slower and more labor and energy intensive, and results in unacceptable material properties at the bend line according to aircraft industry standards. These findings cast doubt over the assertions of some researchers that laser forming may be a viable manufacturing process for parts made in small batches. Instead, it appears that it may be best suited for rapid prototyping of sheet metal parts.  相似文献   

6.
目的在运载火箭设计过程中,获得精确的全箭模态数据,为火箭总体设计提供关键输入参数。方法针对全箭动特性数据的高效高精度获取问题,提出并实践基于三维动力学模型和试验数据重用相结合的模态参数获取方法,包括高精度全箭三维动力学模型建模技术、数据重用技术、多状态模型修正技术、模型综合技术。结果解决了界面连接刚度未知条件下的全箭模态精确预示难题。在设计阶段给出了高精度的动特性数据,分析结果与靶场试验结果比对,一阶弯曲频率误差在2%以内,斜率误差在4%以内,分析结果通过了靶场竖立模态试验验证,最后进一步通过型号首飞成功验证。结论靶场竖立模态试验验证和型号首飞成功验证说明提出的获取全箭动特性参数方法高效可靠。  相似文献   

7.
CAD/CAM-based layered manufacturing and additive manufacturing techniques of metals have found applications in near-net-shape fabrication of complex shaped parts with tailored mechanical properties for several applications. Especially with the onset of newer processes such as electron beam melting (EBM) and direct metal laser sintering (DMLS), revolutionary advances may be achieved in material substitution in the medical implant industry. These processes must be suitably developed and tested for the production of medical grade substitutions. In this article, we discuss a design process for creating periodic cellular structures specifically targeted for biomedical applications. Electron beam melting is used to fabricate the parts. Evaluation of the mechanical properties is performed and compared with design parameters. Compression tests of the samples show effective stiffness values ranging from 0.57 (±0.05) to 2.92 (±0.17) GPa and compressive strength values of 7.28 (±0.93) to 163.02 (±11.98) MPa. Substituting these values for simulation of biomechanical performance of patient-specific implants illustrates the compatibility and matched functional performance characteristics of highly porous parts at a safety factor of 5 and an effective reduction in weight. These developments are unique for the construction of maxillofacial and craniofacial implants. The novel design strategy also lends itself very well to metal additive manufacturing technologies. Implants designed and fabricated with this design strategy and manufacturing process would have mechanical properties equivalent to the part they replace and restore better function and esthetics as against the currently used methods of reconstruction. Suitable examples of a titanium porous cranioplasty plate and a sandwich structure are illustrated.  相似文献   

8.
The utilisation of ferrous wastes in a blast furnace is a well established recycling process to cope with the enormous amounts of ferrous residues in the iron and steel industry. The further input flows of this process, that is especially coke and fluxes, as well as its output flows, that is pig iron and by-products, are highly dependent on the blending of the ferrous wastes while they differ highly in the revenues gained for the treatment and their chemical composition. So far, no planning approach exists for the blending of the residues on the operational planning level that models the dependency of the costs and revenues on the raw material blend and the thermodynamic reactions in the recycling processes adequately. Therefore we present an approach for this operational production planning problem focusing on an integration of such a sufficiently detailed modelling of the underlying metallurgical processes into the planning model. The basis of our approach is a thermodynamic simulation of the processes. From this simulation we derive linear input-output functions for the relevant material and energy flows by using multiple linear regression. These input–output functions form the core of our blending model developed for the planning task. The model is implemented as an integrated decision support system. Exemplary application results are given. These results validate the approach and show that ecological the economic optimisation leads also to results which are advantageous in terms of resource efficiency and emission reduction. Though developed for a specific recycling process, the methodology can be transferred to other metallurgical (recycling) processes, as well as other parts of the process industries, and is therefore of high relevance.  相似文献   

9.
环境中的重金属来源广泛,在环境中有稳定、迁移、累积的特性,已严重危胁到人类健康。控制和消除重金属污染是当今世界环境面临的紧迫问题和巨大挑战。以水环境中的重金属修复为要点,介绍了利用微藻作为吸附材料的创新型生物修复技术在污水修复领域的可行性和优势,根据微藻富集重金属的主要机制,详述了生物富集的过程以及影响吸附行为的主要因素(pH、温度、离子强度、溶解性有机质),并指出了现阶段微藻生物富集重金属的研究重点和趋势。  相似文献   

10.
In this paper, an experimental investigation of the curved surface-straight edge hemming process is presented. Because hemming is the last stage of automotive panel forming operations, it directly influences the product surface, fitting, and joining qualities. Dimensional accuracy and precision in shape are two major concerns of hemmed parts, and these concerns are usually influenced by a large number of material, geometrical, and process factors. Planned experiments have been carried out according to a fractional factorial design method. Through regression analysis of the experimental results, the hemming quality indices, such as creepage, recoil, and radial springback, as well as hemming loads, can be expressed as a weighted sum of the input variable effects. In addition, the magnitude of each effect can be ranked from the most to the least significant. Using this information, hemming design guidelines can be developed for the optimization of hemming processes.  相似文献   

11.
Part 1 of this series of papers presents an analytical model for a multi-nose tube hydroforming process based on a mechanistic approach. In this process, the tube is surrounded by a number of evenly distributed circular dies. The model was established based on equilibrium conditions, yielding criteria, geometrical relationships, and a volume constancy condition. The system of equations was derived and solved for various process parameters. The model validation was performed using finite element analysis and experiments. The model has the ability to predict process parameters such as stresses, strains, internal pressure, geometry variables, and thinning rate distribution. The model could be applied to regular planar tube hydroforming of polygonal shapes such as square, pentagon, or octagon. Details for establishing governing relationships for polygonal shape hydroforming from the multi-nose analytical model are given in Part 2 of this series of papers.  相似文献   

12.
Wrinkling is one of the major defects in sheet metal forming. The ability to accurately predict the occurrence of wrinkling is critical to the design of tooling and processing parameters. An analytical approach for predicting the onset of flange wrinkling is presented. This method is based on the wrinkling criterion proposed by Cao and Boyce for predicting the buckling behavior of sheet metal under normal constraint. Using a combination of energy conservation and plastic bending theory, the analysis provides the critical buckling stress and wavelength as functions of normal pressure. The results are in excellent agreement with those obtained from Cao and Boyce's numerical approach, and also match well with the experimental results of a square cup forming. In addition, the effects of material properties on the wrinkling behavior are also discussed. The analytical method significantly reduces computational time and is suitable for direct engineering application.  相似文献   

13.
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths, numerical simulations of the forming process with LS-DYNA, and experimental validation of strain predictions using Digital Image Correlation (DIC) techniques. Three kinds of parts include hyperbolic cone, skew cone and elliptical cone are constructed and used as examples for the study. Analytical, numerical and experimental results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.  相似文献   

14.
Surface distortions in the form of wrinkles are often observed in sheet metals during stamping and other forming operations. Because of the trend in recent years towards thinner, higher-strength sheet metals, wrinkling is increasingly becoming a more common and troublesome mode of failure in sheet metal forming. The prediction and prevention of wrinkling during a sheet forming process are important issues for the design of part geometry and processing parameters. This paper treats the phenomenon of flange wrinkling as a bifurcated solution of the equations governing the deep drawing problem when the flat position of the flange becomes unstable. Hill’s bifurcation criterion is used to predict the onset of flange wrinkling in circular and square cup drawing. In particular, the maximum cup height that can be drawn without the onset of flange wrinkling is predicted for the given set of process parameters. A parametric study of the maximum cup height is also carried out with respect to various geometric, material and process parameters. Finite element formulation, based on the updated Lagrangian approach, is employed for the analysis. The incremental logarithmic strain measure, which allows the use of a large incremental deformation, is used. The stresses are updated in a material frame. The material is assumed to be elastic–plastic, strain hardening, yielding according to an anisotropic yield criterion of Barlat et al. (2005) [23] (named as Yld2004-18p). Isotropic power law hardening is assumed. Inertia forces are neglected due to small accelerations. Modified Newton–Raphson iterative technique is used to solve the nonlinear incremental equations.  相似文献   

15.
To realize an intelligent machine tool, which can autonomously determine the cutting states and can change them automatically as required due to changes in the environmental conditions, a method has been developed to monitor and identify the states of cutting for CNC turning based on a pattern recognition technique. The method proposed introduces three parameters to classify the cutting states of continuous chip formation, broken chip formation, and chatter. Among the states of cutting, the broken chip formation is required for the stable and reliable machining process. The three parameters are calculated and obtained by taking the ratio of the average variances of the dynamic components of three cutting forces. The algorithm was developed to calculate the values of three parameters during the process to obtain the reference feature spaces and determine the proper threshold values for classification of the cutting states. A tool dynamometer is developed, and implemented to the CNC turning machine to monitor the turning process.It is proved by a series of cutting experiments that the states of cutting are well identified by the method developed and proposed regardless of the cutting conditions. The algorithm is proposed to obtain the broken chips by changing the cutting conditions during the process.  相似文献   

16.
基于连续介质力学及有限变形理论 ,建立了用于三维板料成形过程模拟的有限元模型 ,开发了动力显式算法的板料成形过程模拟的有限元分析程序DESSFORMM3D。最后 ,用笔者新开发的动力显式弹粘塑性有限元程序对不同压边情况下半球形件的拉深过程进行分析 ,并把数值结果与实验进行对比 ,验证了软件的计算结果。  相似文献   

17.
Machine-tools have been identified as one of the main energy-using products to be analyzed in an Ecodesign perspective, targeting the reduction of their environmental impact. Following this, machine-tool manufacturers are committed to anticipate eminent regulations and are looking for guidelines to improve their products on an effective and low-cost manner. This paper describes part of the energy consumption study followed in the frame of the Ecodesign of a commercial press-brake. All-hydraulic and all-electric commercially available systems, of different capacities and working in real production scenarios, have been included. From this study, a preliminary version of an LCI dataset for the bending process is proposed, structured in technology, machine capacity and usage mode categories, and using the bending cycle as the reference unit. The energy consumption per category was estimated based on a specific process energy model built as a function of the referred parameters. The contribution of the respective machine-tool structure to the environmental impact of the machining process is to be included, targeting the completion of such machining unit process dataset. The full LCA of an all-hydraulic system revealed the significant contribution of the machine-tool structure to the global life-cycle environmental impact of the machine (about 40%), while electricity during use phase contributes with about 46% to the total impact. This contradicts the general results published for other metal and non-metal forming processes, and is understood to be related with the discrete loading character of such forming processes here discussed.  相似文献   

18.
Electrohydraulic forming (EHF) is a high energy rate forming process in which the strain rate in the sheet metal can vary from 5 × 102 to 105 s−1 depending on various factors. Several mechanisms have been reported to cause an improvement in formability in EHF such as material deformation mechanisms, inertial effects and the dynamic impact of the sheet against the die. EHF is a complex high speed forming process and experimental work alone is not sufficient to properly understand this process. To understand the variation of some influential variables in EHF, electrohydraulic die-forming (EHDF) and free-forming (EHFF) of DP590 dual phase steel were simulated in ABAQUS/Explicit by considering the fluid/structure interactions. Three-dimensional finite element simulations were conducted by modelling the water with Eulerian elements with a view to investigating the effect of released energy on the sheet deformation profile history, strain distribution, loading path and damage accumulation type. The Johnson–Cook constitutive material model was used to predict the sheet behaviour and the parameters in this model were calibrated based on experimental test results available for DP590 at various strain rates. The Johnson–Cook phenomenological damage model was also used to predict the ductile failure (damage accumulation) in both EHDF and EHFF. Predicted final strain values and damage accumulation type showed good agreement with the experimental observations.  相似文献   

19.
The precision of cold forging parts becomes critical because the process depends on many factors such as the size and complexity of the parts. Defects negatively affect the assembly accuracy and the performance of the parts. Therefore, defects must be detected and prevented as soon as possible before the manufacturing process begins. The paper intends to investigate the geometrical defect of the cold embossing pin head, which may result in an inaccurate assembly of the blade. In this paper, defect formation was studied using DEFORM-2D based on material flow pattern and stress distribution. The defect was measured in terms of incomplete filling and geometries of the bulging. The effect of the distance to the edge (DTE) is significant to the formation of defects. The size of the bulge is reduced and the filling ability shows better performance as the DTE increases. The FE results are in good agreement with the experimental result.  相似文献   

20.
Cost-effective machining of hardened steel components such as a large wind turbine bearing has traditionally posed a significant challenge. This paper presents an approach to machine hardened steel parts efficiently at higher material removal rates and lower tooling cost. The approach involves a two-step process consisting of laser tempering of the hardened workpiece surface followed by conventional machining at higher material removal rates with lower cost ceramic tools to efficiently remove the tempered material. The laser scanning parameters that yield the highest depth of tempered layer are obtained from a kinetic phase change model. Machining experiments are performed to demonstrate the possibility of higher material removal rates and improved tool wear behavior compared to the conventional hard turning process. Tool wear performance, cutting forces, and surface finish of Cubic Boron Nitride (CBN) tools as well as low cost ceramic tools are compared in machining of hardened AISI 52100 steel (~63 HRC). In addition, cutting forces and surface finish are compared for the laser tempering based turning and conventional hard turning processes. Experimental results show the potential benefits of the laser tempering based turning process over the conventional hard turning process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号