首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Friction stir spot welding is performed on thin plates of an aluminum alloy. This paper presents the results on how the number of tool rotations affects the quality of the resulting spot weld. Different combinations of rotation rate and dwell time are investigated. A linear relationship was found to exist between the number of tool rotations completed during the spot weld and the resulting tensile shear strength. Spot welds that only completed 10 rotations were 177% stronger than those created at 50 tool rotations. The energy generated during the welding operation was quantified and also found to have a linear relationship with tensile shear strength. A modified open-loop position control system is proposed that monitors and limits the energy generated during friction stir spot welding by adjusting the dwell time.  相似文献   

2.
The viability of using 316L stainless steel in the ultrasonic consolidation process was examined in this work. Ultrasonic consolidation is an additive, free-form manufacturing process that employs ultrasonic welding and machining to form a part. The process ultrasonically joins layers of metal together by welding them one at a time. Once four layers of metal foil are welded together, welding is suspended and the system machines the part outline, and repeats this cycle until a component is completed. Experiments were conducted to determine the feasibility and processing parameters for ultrasonically welding stainless steel. Mechanical testing and optical microscopy were conducted. 316L stainless steel was successfully welded. Increasing welding amplitude and decreasing welding speed were the most effective way to increase weld peel strength. Unlike work in aluminum alloys, these experiments found no relationship between horn force and peel strength. Rough processing windows for ultrasonically welding 316L were identified.  相似文献   

3.
This study investigates the experimental research of the appropriated conditions for the magnetic pulse welding of AA6060T6 tubular assembly. Some welding tests were performed with two process parameters: the charging voltage and the width of the air gap between the two parts to be welded. A torsion-shear test, associated with the material fracture surfaces observation, gives an insight about the appropriateness of the welding conditions. The failure mode of the destructive test gives a dimensional criterion of the weld that is used as weld quality. It appears that the voltage does not strongly affect the weld quality for a low gap. It is possible to find an optimal gap range giving a high weld length. When the gap is too small, it is necessary to increase the pressure on the flyer, and some cracks appear in the material. Similarly, when the gap is too large, the high impact energy damages the welded interface.  相似文献   

4.
Human welder's experiences and skills are critical for producing quality welds in manual GTAW process. Learning human welder's behavior can help develop next generation intelligent welding machines and train welders faster. In this tutorial paper, various aspects of mechanizing the welder's intelligence are surveyed, including sensing of the weld pool, modeling of the welder's adjustments and this model-based control approach. Specifically, different sensing methods of the weld pool are reviewed and a novel 3D vision-based sensing system developed at University of Kentucky is introduced. Characterization of the weld pool is performed and human intelligent model is constructed, including an extensive survey on modeling human dynamics and neuro-fuzzy techniques. Closed-loop control experiment results are presented to illustrate the robustness of the model-based intelligent controller despite welding speed disturbance. A foundation is thus established to explore the mechanism and transformation of human welder's intelligence into robotic welding system. Finally future research directions in this field are presented.  相似文献   

5.
Flexural strength is one of the main criteria in evaluation of the mechanical properties of polymeric joints. The flexural strength of thermoplastics, such as high density polyethylene (HDPE) sheets, is influenced by friction stir welding parameters. The determination of the welding parameters plays an important role in the weld strength. In the present study, the response surface method (RSM) was used as a statistical design of experiment technique to set the optimal welding parameters. The designed tool was consisted of a rotating pin, a stationary shoulder (shoe) and a heating system inside shoe. Rotational speed of the pin, tool traverse speed and shoe temperature were considered as varying parameters. Obtained results show a significant relationship between considered properties and processing parameters through an analysis of variance (ANOVA) study and the response surface method. It was found that welding at a high level of rotational speed and a lower level of tool travel speed increases weld flexural strength by reducing size of defects.  相似文献   

6.
Tungsten inert gas-metal inert gas (TIG-MIG) hybrid welding process is an effective way to improve welding productivity and quality due to advantages of the two processes. Mathematical analysis is crucial to fundamentally understand this synergetic welding process. In this study, based on experimental visualization of arc behaviors, some assumptions are proposed to deduce adaptive plane and volumetric heat source models separately for each involved welding method first. The influence of torch angles on distribution of temperature and geometry of weld bead are calculated and compared with experimental results. It shows that this developed algorithm of heat source can be employed to accurately predict welding process whether the electrode gun is slanted backward or forward to the direction of welding. Then TIG-MIG hybrid welding process is simulated and analyzed without considering the attractive or repulsive force of two arcs. The characteristic of TIG-MIG welding process is discussed compared to single MIG. It lays the foundation for the further research on the interaction of the two arcs during TIG-MIG hybrid welding.  相似文献   

7.
In this paper a shared control strategy is presented that allows a skilled operator to identify irregularities that occur during robotic friction stir welding (FSW) and assist the robotic system in producing an appropriate response. Human operators are adept at identifying disturbances; however, the complexity of the friction stir welding process makes it difficult for the operator to respond. While examining the capabilities of shared control in friction stir welding, this paper focuses on responding to defects that are caused by a lack of workpiece material during butt welding, such as gaps. A compensation strategy is presented that combines the human operator's perceptual strengths with an automated procedure for adjustment of the process parameters (i.e. travel angle and plunge depth). Experiments comparing four control strategies are performed while welding 5083-H116 aluminum. Through our experiments we demonstrate that if the FSW control task is appropriately shared between the human operator and the computer control system, the weld quality (strength) can be improved (from 9 ksi to 31 ksi for a gap size of 2.5 mm) as compared with the nominal case in which no corrections are made.  相似文献   

8.
9.
A rotating anvil similar to a pinless friction stir welding (FSW) tool can be applied to friction stir spot welding (FSSW) of thin metal plates. FSSW is a solid-state joining process that is currently being used by automotive manufacturers as an alternative to rivets and traditional resistance spot welding. The principal detractor of this process is the keyhole left by pin extraction, which can be detrimental to the weld strength. A pinless tool can be used to eliminate the keyhole. However, this approach is limited to joining thin sheet (≤1 mm). Using a rotating anvil with the FSSW process permits the joining of thicker cross sections, improves the mechanical strength of the spot weld and reduces the reaction forces on the spot welding frame. A numerical model of the process, tensile shear tests and macrosection analysis are used to evaluate the spot welds.Macrosection and numerical analysis reveals that the material flow between the pinless tool and rotating anvil is complex and unique to this process. It has been found that the use of a rotating anvil for FSSW is a viable means to create quality spot welds in thicker weldments.  相似文献   

10.
Real-time monitoring and control of temperature in ultrasonic joining of battery tabs and coupons are important for the quality improvement and cost reduction of battery assembly. However, there have always been difficulties in accurate and real-time measurement of temperature by conventional sensors for practical implementation. In this study, an innovative method is developed to provide an enabling technology for the in situ transient temperature monitoring, which could provide reliable feedback signals for potential control of ultrasonic joining processes. Micro thin film thermocouples (TFTCs) were fabricated on thin silicon substrates, which were then inserted in the welding anvil as a permanent feature so that the sensors were always located about 100 μm directly under the welding spot during joining of multilayer Ni-coated Cu thin sheets for battery assembly. Good repeatability was demonstrated while a temperature rise of up to 650 °C was obtained due to the closeness of the sensors to the welding spot. The inserts with thin film sensors remained functional after welding experiments. This method has a great potential for in situ transient temperature monitoring, and thus the control of ultrasonic joining processes to realize a practical smart joining system.  相似文献   

11.
This paper presents some new evolutions of research works in the IRWTL at SJTU on intelligentized technologies for arc welding dynamic process and robot systems, including multi-information sensing of arc welding process, such as characteristic extraction of weld pool image, voltage, current, and sound, arc-spectral features; multi-information fusion algorithms for prediction of weld penetration; intelligentized modeling of welding dynamic process; intelligent control methodology for welding dynamic process; intelligentized technologies for robotic welding, such as guiding and tracking seam technology and intelligent control of weld pool and penetration in robotic welding process; and development of autonomous welding robot system for the special environment. The ideas of intelligentized welding manufacturing technology (IWMT) and intelligentized welding manufacturing engineering (IWME) are presented in this paper for systematization of intending researches and applications on intelligentized technologies for modern welding manufacturing. The studies of intelligentized welding presented in this paper establish the foundation work of intending researches and applications on intelligentized technologies for modern welding manufacturing.  相似文献   

12.
Pulsed laser spot welding is used in the manufacture of many goods. Because weak joints can lead to product defects, it is important to monitor and control the joint strength precisely. This paper introduces a method to estimate the joint strength of spot welds during the welding process. A point infrared sensor is used to measure temporal radiation on the top face of the spot weld. Because variable measuring conditions affect the radiation power, a scale-free radiation feature is extracted from the measured radiation and used as a monitoring criterion. An artificial neural network (ANN) uses this feature to estimate joint strength. In experiments, significant welding parameters are varied within a controllable range, and 640 weld parts are used for ANN learning. The correlation coefficient between the estimated and measured strength is more than 0.98 for learned parts. Another 180 weld parts are used to appraise the efficiency of the learned ANN, and the mean square error of estimation is 0.78 kgf.  相似文献   

13.
Laser welding is used for joining advanced high strength steels (AHSS) to improve formability and performance. In this paper, the geometric variability observed in the fusion zones and heat affected zones of several combinations of AHSS (different types, coatings and thicknesses), which were butt welded using a Trumpf TRUDISK 6000® Yb:YAG laser beam, is presented. The surface texture parameters such as roughness and waviness of laser welds were also measured and correlated with geometric variability. Results indicate that although high quality welds with minimal defects can be obtained using the Yb:YAG laser welding process, there is considerable variation in both the shape and the dimensions of weld zones. The variability increased with an increase in thickness differentials between the sheets being welded. Analysis of the top of the weld surfaces also suggested that aluminum coating on USIBOR samples contributes significantly to increased roughness. An increase in laser power coupled with corresponding increase in welding speed did not impact variability. A fair correlation between the surface roughness and weld region variability exists, although this needs further study.  相似文献   

14.
In this study, an attempt is being made to determine the feasibility of Magnetically Impelled Arc Butt (MIAB) welding process for joining alloy steel tubes in pressure parts. In view of this, a specially made state of art MIAB welding unit (MD1) available at WRI, BHEL, Tiruchirappalli has been employed and adequate number of welding trials is conducted to weld alloy steel tubes of 6–7 mm thickness for boiler applications. The combination of a set of values provided as input is varied for each trial. The welding current and the welding time are divided into three and four stages respectively. For each trial, either the current in stage II is varied or the time for stage III is varied while maintaining the other input parameters constant. These trials are carried out mainly to develop an optimum window (working range) for the process parameters. Further, the strength of MIAB welded specimens are examined by subjecting the welded specimens to various destructive tests. It is observed that the weld region is stronger than the base metal in most of the cases.In the next part of the study, the characteristics of MIAB welded joints for T11 steel tubes are compared with those using flash butt welding and induction pressure welding that is presently employed for alloy steel tube joining in pressure parts. It is found that the manufacturing time and incurred cost per weld drastically reduces while simultaneously increasing the productivity. Hence, the feasibility of MIAB welding process for pressure part is established.  相似文献   

15.
目的研究法兰环焊缝缺陷产生的原因,采取相应针对性措施,预防泄露事故发生。方法通过宏观分析、超声检测、化学成分分析、金相分析、能谱分析对环焊缝裂纹形成原因进行分析。结果裂纹起源于根焊焊材与母材间,两端较为平滑,沿环焊缝周向方向扩展。焊缝中夹渣的残留药皮和层间未熔合缺陷,是形成裂纹的内在原因。结论焊缝产生裂纹由焊接参数控制不当引起的。  相似文献   

16.
The objective of this research is to investigate the mechanical properties including bonding, tensile strength, and impact resistance of pure copper welded using friction stir welding (FSW) method and compare them with that of tungsten inert gas (TIG) welding. Micro-hardness tests are performed on pure copper, TIG welded copper and FSW welded copper to determine the effect of heat on the hardness of welded coppers. Tensile strength tests and notch tensile strength tests are performed to determine the mechanical properties of different weld process.In this experiment, it is found that the notch tensile strength and the notch strength ratio for FSW (212 MPa, 1.10) are significantly higher than those (190 MPa, 1.02) of TIG welding. For the impact tests, the weld zone and heat-affected zone energy absorption values for FSW (2.87 J, 2.25 J) are higher than those (1.32 J, 0 J) of TIG welding. XRD tests are performed to determine components of copper before and after welding process for TIG and FSW.  相似文献   

17.
Effects of switching over from gas tungsten arc welding (GTAW) to pulsed current gas tungsten arc welding (PCGTAW) on the quality of joints produced in Hastelloy C-276 material were investigated. Welding was carried out both by autogenous mode and using ERNiCrMo-3 filler wire. Microstructures of weld joints produced with and without current pulsing were studied using optical and scanning electron microscopy. Microsegregation occurring in GTAW and PCGTAW joints was investigated using energy dispersive X-ray spectroscopy (EDS). Strength and ductility of weld joints produced with and without pulsing were evaluated. The results show that pulsing results in refined microstructure, reduced microsegregation and improved strength of weld joints. Secondary phase(s) noticed in GTA weldments were found to be absent in PCGTA weldments. Autogenous PCGTA weldments were found to be the best in terms of: (i) freedom from microsegregation, (ii) strength and (iii) freedom from unwanted secondary phases.  相似文献   

18.
刘燕  杨庆媛 《自然资源学报》2021,36(11):2926-2937
从地票复垦生产和落地使用双边视角,采用区位基尼系数、热点分析、重心演变等方法探寻地票交易特征动态变化过程及其与人口流动的耦合态势。研究表明:(1)重庆主城区地票流入极功能弱化;渝西地区正成为新的地票流入极;渝东北、渝东南地区发展为以产出地票为主、兼具地票使用需求的复合区域。(2)渝东北、渝东南分别是地票复垦生产的主极核和次极核。渝西地区呈爆发式产出剧增。(3)地票流与人口流呈“偏离—一致—偏离”耦合态势。差异化的落地政策刺激了人口流出区地票使用积极性,造成地票流入偏离城镇人口流入轨迹;渝西地区受需求驱动大规模生产地票、渝东北和渝东南剩余农村闲置建设用地资源潜力有限,造成地票流出偏离乡村人口流出轨迹。  相似文献   

19.
针对一次给料稳定运行污泥热解系统制取三相产物的工艺展开分析,并基于能流图、能源回收率、能耗比等方法和衡算指标讨论该工艺的能量平衡关系。研究发现:热解产物的产率和热值高低受热解终温影响最大,反应时间次之,升温速率最小。不同工况条件下热解过程热量损失具有明显差别,热解停留时间长、升温速率低都造成输入能量、热损失增大。热解过程能量平衡分析也验证了以制取气相产物为目标的污泥热解工艺条件的回收率和能耗比最高,分别为0.94和1.73;与高产出液相油的热解过程相比,产物总能量相差不多而系统消耗的能量能够减少35%。从能源回收、节约能源角度分析,污泥低温热解制取可燃性气相产物的工艺系统具有较高应用价值。  相似文献   

20.
某汽车用排气管使用不久焊缝处断裂。对失效排气管焊缝进行化学成分、金相组织和断口的微观分析。发现该排气管焊缝柱状组织粗大,断口微观形貌为沿晶断裂,柱状晶贯穿整个断裂面,断口有较明显的脆性特征。分析认为该排气管属于早期失效,是由于薄壁的排气管焊接时温度过高,导致焊缝柱状组织粗大,加之薄壁管冷却又快,致使焊缝产生较大的内应力。建议改进焊接工艺,控制较低的层间温度,使焊缝组织细化,解决焊缝断裂问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号