首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.  相似文献   

2.
The dynamics of heavy metals in plant-soil interactions   总被引:1,自引:0,他引:1  
The effects of soil contamination by heavy metals are studied by a mathematical interaction model, validated by experimental results. The model relates the dynamics of uptake of heavy metals from soil to plants. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality. Data are taken from soil with Cd, Cu and Zn treatments for alfalfa, lettuce, radish and Thlaspi caerulescens, measuring the concentrations in the aboveground biomass of plants. At low concentrations, the effects of heavy metals are moderate, and the dynamics seem to be linear. However, increasing concentrations exhibit nonlinear behaviors.  相似文献   

3.
● A review of machine learning (ML) for spatial prediction of soil contamination. ● ML have achieved significant breakthroughs for soil contamination prediction. ● A structured guideline for using ML in soil contamination is proposed. ● The guideline includes variable selection, model evaluation, and interpretation. Soil pollution levels can be quantified via sampling and experimental analysis; however, sampling is performed at discrete points with long distances owing to limited funding and human resources, and is insufficient to characterize the entire study area. Spatial prediction is required to comprehensively investigate potentially contaminated areas. Consequently, machine learning models that can simulate complex nonlinear relationships between a variety of environmental conditions and soil contamination have recently become popular tools for predicting soil pollution. The characteristics, advantages, and applications of machine learning models used to predict soil pollution are reviewed in this study. Satisfactory model performance generally requires the following: 1) selection of the most appropriate model with the required structure; 2) selection of appropriate independent variables related to pollutant sources and pathways to improve model interpretability; 3) improvement of model reliability through comprehensive model evaluation; and 4) integration of geostatistics with the machine learning model. With the enrichment of environmental data and development of algorithms, machine learning will become a powerful tool for predicting the spatial distribution and identifying sources of soil contamination in the future.  相似文献   

4.
我国土壤环境质量研究几个值得探讨的问题   总被引:33,自引:0,他引:33  
针对当前我国土壤环境工作情况,讨论了土壤环境质量研究中3个值得探讨的问题:土壤污染定义、土壤环境质量标准修订和土壤污染防治法立法.关于土壤污染的定义,目前尚无一致的认识.笔者在综合国内外主要观点的基础上提出了土壤污染的定义,并建议建立基于风险评估的土壤环境质量标准体系,认为目前宜制订土壤环境质量目标值、土壤(分别有农业、居住、工业用地土壤)环境质量指导值和土壤污染危害临界值3类标准值,同时分别提出了初步的制订方法.制定土壤污染防治法是我国建立一套行之有效的土壤环境管理体系的需要,笔者在技术层面上讨论了土壤污染防治法的制定问题.  相似文献   

5.
Australia has a long history of metal mining and smelting. Extraction and processing have resulted in elevated levels of toxic metals surrounding mining operations, which have adverse health effects, particularly to children. Resource companies, government agencies and employees often construct ‘myths’ to down play potential exposure risks and responsibility arising from operating emissions. Typical statements include: contaminants are naturally occurring, the wind blows emissions away from residential areas, contaminants are not bioavailable, or the problem is a legacy issue and not related to current operations. Evidence from mining and smelting towns shows that such ‘myths’ are exactly that. In mining towns, the default and primary defence against contamination is that elevated metals in adjacent urban environments are from the erosion and weathering of the ore bodies over millennia—hence ‘naturally occurring’. Not only is this a difficult argument to unravel from an evidence-based perspective, but also it causes confusion and delays remediation work, hindering efforts to reduce harmful exposures to children. An example of this situation is from Broken Hill, New South Wales, home to one of the world’s largest lead–zinc–silver ore body, which has been mined continuously for over 130 years. Environmental metal concentration and lead isotopic data from soil samples collected from across Broken Hill are used to establish the nature and timing of lead contamination. We use multiple lines of evidence to unravel a ‘miner’s myth’ by evaluating current soil metal concentrations and lead isotopic compositions, geological data, historical environmental assessments and old photographic evidence to assess the impacts from early smelting along with mining to the surface soils in the city.  相似文献   

6.
Cadmium contamination in the agricultural soil of the region Leipzig-Halle was determined at 63 sites covering an area of ca. 7 000 km2. Normalization according to lutum and organic matter lead to effective exposure values; their distribution was compared with NOEC data taken from literature. The risk analysis reveals that the soil fauna is potentially affected by cadmium contamination at 9% of the investigated sites.  相似文献   

7.
Environmental site assessments are frequently executed for monitoring and remediation performance evaluation purposes, especially in total petroleum hydrocarbon (TPH)-contaminated areas, such as gas stations. As a key issue, reproducibility of the assessment results must be ensured, especially if attempts are made to compare results between different institutions. Although it is widely known that uncertainties associated with soil sampling are much higher than those with chemical analyses, field guides or protocols to deal with these uncertainties are not stipulated in detail in the relevant regulations, causing serious errors and distortion of the reliability of environmental site assessments. In this research, uncertainties associated with soil sampling and sample reduction for chemical analysis were quantified using laboratory-scale experiments and the theory of sampling. The research results showed that the TPH mass assessed by sampling tends to be overestimated and sampling errors are high, especially for the low range of TPH concentrations. Homogenization of soil was found to be an efficient method to suppress uncertainty, but high-resolution sampling could be an essential way to minimize this.  相似文献   

8.
The post-ingestion bioavailability of arsenic (As) in alluvial soil and mineral beneficiation waste from Ron Phibun, Nakhon Si Thammarat Province, Thailand has been investigated using a physiologically-based extraction test (PBET). The method utilises synthetic leaching fluids closely analogous to those of the human stomach and small intestine, upon which the leaching duration and ambient temperature of the experimental procedure are also directly based. Replicate analyses of Ron Phibun alluvium samples holding 1406 and 2123 g As g-1 respectively indicated an average stomach absorption of 11.2% (of total soil As). Gross absorption increased to 18.9% following translocation through a simulated small-intenstine regime. Higher gross absorption (35.7%) was recorded during PBET analysis of a flotation waste sample holding c. 2% total As. Within- and between-site variations of As bioavailability can principally be ascribed to mineralogical factors, notably the relative abundances of sulphide, arsenide, arsenate and oxide hosts within the soil/flotation waste matrix. The PBET provides a potentially valuable mechanism for refining risk assessments of sites subject to natural or anthropogenic As contamination. Through the substitution of total soil As values with input data which relate specifically to bioavailable As, risk calculations derived using established models such as the US-EPA package Risk Assistant may prove more realistic, thus facilitating improved cost-benefit analysis of site remediation options. Assessment of the relative human risks associated with potable water consumption and contaminated soil ingestion at Ron Phibun has signified that the latter could constitute a more significant As exposure pathway than recognised previously. Further evaluation of the precise soil ingestion levels of inhabitants residing on the As-rich alluvium which covers much of the district is, therefore, warranted.  相似文献   

9.
根据实地采样数据,运用地统计学方法分析苯并(a)芘污染的空间变异特征,同时研究各地污染水平与其自然环境、产业布局之间的关系。结果表明:土壤苯并(a)芘含量在研究区存在空间异质性,在240 km空间尺度上尤其明显,块金值(C0)和基台值(C0 C)之比为44%;这说明其空间变异由结构性因子(如土壤有机质)和随机性因子(如污染源分布)共同构成;钢铁工业(包括焦化工)是苯并(a)芘的主要排放源,土壤苯并(a)芘污染也以钢铁工业(包括焦化工)发达的城市及其附近区域为核心。  相似文献   

10.
Influence of Environmental Contamination with PCBs on Human Health   总被引:1,自引:0,他引:1  
Statistical data on different sicknesses have been processed to evaluate the dynamics of human health in Serpukhov City (an administrative centre in the Moscow region of Russia) and to estimate the contribution of ecological factors to the total level of morbidity. Chlorinated biphenyls (PCBs) appear to be among the most dangerous contaminants of the ecosystem that includes the urban areas and those lands, which are actively used for vegetable production. A preliminary health risk calculation for PCBs has been done using soil contamination data. We estimated the share of cancer attributable to soil contamination with PCBs to be approximately 6% of the value of total cancer morbidity in Serpukhov. The highest level of soil pollution by PCBs occurred in the district of the city where the highest values of some other sicknesses also were located. The results of this study could be useful for decision-making and planning of environmental policy in the city.  相似文献   

11.
Soil contaminations with the explosive 2,4,6-TNT are a major problem at many sites of former ammuniton plants in Germany. But only little is known about its environmental or metabolic fate in soil or plants. A field study was conducted on a former ammunition plant in Stadtallendorf/Hessen. Three areas with different TNT concentrations were planted with 8 different crops. After harvest plants were analyzed for TNT, ADNTs and DNTs. Soil contamination decreased in the rhizosphere compared to unplanted areas and there was a transfer of TNT from soil to the plants. Accumulation in plants was dependent on soil contamination and also specific for different plant parts or plant species. The contamination spectrum of TNT and derivatives was different in soil or plant tissue, respectively. After acid hydrolysis of bean roots, 2,6-DNT and 2,4-DNT could be identified in the extract.  相似文献   

12.
This study aims to reveal whether complexity, namely, community and trophic structure, of chronically stressed soil systems is at increased risk or remains stable when confronted with a subsequent disturbance. Therefore, we focused on a grassland with a history of four centuries of patchy contamination. Nematodes were used as model organisms because they are an abundant and trophically diverse group and representative of the soil food web and ecosystem complexity. In a field survey, a relationship between contaminants and community structures was established. Following, two groups of soil mesocosms from the field that differed in contamination level were exposed to different disturbance regimes, namely, to the contaminant zinc and a heat shock. The zinc treatment revealed that community structure is stable, irrespective of soil contamination levels. This implies that centuries of exposure to contamination led to adaptation of the soil nematode community irrespective of the patchy distribution of contaminants. In contrast, the heat shock had adverse effects on species richness in the highly contaminated soils only. The total nematode biomass was lower in the highly contaminated field samples; however, the biomass was not affected by zinc and heat treatments of the mesocosms. This means that density compensation occurred rapidly, i.e., tolerant species quickly replaced sensitive species. Our results support the hypothesis that the history of contamination and the type of disturbance determine the response of communities. Despite that ecosystems may be exposed for centuries to contamination and communities show adaptation, biodiversity in highly contaminated sites is at increased risk when exposed to a different disturbance regime. We discuss how the loss of higher trophic levels from the entire system, such as represented by carnivorous nematodes after the heat shock, accompanied by local biodiversity loss at highly contaminated sites, may result in detrimental effects on ecosystem functions.  相似文献   

13.
A model for heavy metal contamination of crops and ground water was set up and tested. It was found possible to use the model to predict the heavy metal concentration in crops.The model indicates that Pb is limiting the use of sludge as a soil conditioner, and that in most cases, contamination of crops seems to be a greater danger than contamination of ground water. However, when soil with a high humus or clay content is used at a pH close to 7.00, municipal sludge can be used in considerable quantities without danger.  相似文献   

14.
The contamination of soils with pollutants by human activities has increased over a period of some decades. Deposited pollutants are immobilized in different ways depending on their chemical properties, or they are biologically available. This potential hazard requires a permanent control. An extensive investigation of topsoil in the surroundings of the fertilizer factory at Dorndorf-Steudnitz (Thuringia) was carried out to assess the size and extension of contamination and to estimate the potential risk which originates from the deposited pollutants. The fertilizer factory at Dorndorf-Steudnitz was one of the biggest dust emission sources in the middle part of the Saale river valley. Considerable damages of vegetation could be noticed already in the seventies and eighties. The trees and other plants in the neighbourhood of the factory died. The loadings of the investigated area may be attributed to a direct influence of gaseous and also of dustlike pollutants on the vegetation and resorption from the soil. Frequently, the content of pollutants in soils varies considerably. For this reason a univariate statistical evaluation of the data is not usually adequate. The use of geostatistical methods permits the characterization of the spatial structure of the investigated area and the undistorted assessment of the pollutant contents at unsampled points. The degree and extension of the contamination can be determined on the basis of the kriging estimation. The classification of analyzed features in regard to common sources of contamination can be realized by means of methods of multivariate data analysis.  相似文献   

15.
Diesel oil is a complex mixture of hydrocarbons with an average carbon number of C8–C26. The majority of components consist of alkanes, both straight chained and branched and aromatic compounds including mono-, di- and polyaromatic hydrocarbons. Regardless of this complexity, diesel oil can be readily degraded by a number of soil microorganisms making it a likely candidate for bioremediation. The concept of using plants to enhance bioremediation, termed phytoremediation, is a relatively new area of scientific interest. It is particularly applicable to diesel oil contamination as diesel oil generally contaminates the top few metres of soil (surface soil) and contamination is not uniform throughout the site. By encouraging plants to grow on diesel oil contaminated soil, conditions are improved for the microbial degradation of the contaminant. During this study, establishing plants on diesel oil contaminated soil proved difficult. Diesel oil is phytotoxic to plants at relatively low concentrations. At concentrations below this phytotoxic level, the development of plants grown in diesel oil contaminated soil differs greatly from plants grown in uncontaminated soil. Tolerance of plants to diesel oil and ability to germinate in diesel oil contaminated soil varied greatly between plant species as well as within plant species. The broadest differences in germination were seen within the grasses with certain species thriving in low levels of contamination (e.g. Creeping bent) while others were intolerant of diesel oil contamination (e.g. Rough meadow grass). The herbs, legumes and commercial crops screened appeared to be largely unaffected by low levels of diesel oil contamination (25g dieselkg–1). At the higher level of contamination (50g dieselkg–1), half of the twenty two plants species screened failed to reach a germination rate equal to 50% of the control rate. Two species of grass failed to germinate at all at this contamination level. Plant species that successfully germinated and grew were studied further to determine the effect of diesel oil contamination on the later stages of plant development. This work investigates the effect of diesel oil on plant growth and development.  相似文献   

16.
The Pb (II) adsorption/desorption mechanism onto a natural sandy loam soil was studied by batch experiments at different pHs (3.0, 4.5, 6.0), at different ionic strength (0, 0.02 and 0.1 M) and with different electrolytes solutions of NaCl, NaAcO and NaNO3. Pb was strongly adsorbed onto the soil due to the formation of a mix of inner-sphere and outer-sphere complexes. Experimental adsorption data fitted Freundlich and Langmuir isotherms. The desorption results with 0.1 M Mg (NO3)2 and 0.1 M NaAcO solutions corroborated the mechanisms proposed. The strong binding of Pb (II) to high affinity sites on soil minerals seems to be responsible for the extent of hysteresis. The sandy loam soil under study thus constitutes a natural control for Pb contamination.  相似文献   

17.
The results of lysimeter experiments conducted since 1991 dealing with the behavior of PAH in soil/plant systems demonstrate that the PAH pollution to cultivated plants may be caused by both atmospheric deposition and by the soil-to-plant transfer observed in contaminated sites. In the latter, a “direct contamination” of plant surfaces with PAH-loaded soil particles and the subsequent PAH turnover by desorption/adsorption processes is seen to dominate—at least for the most relevant PAHs toxic to humans, benzo(a)pyrene and dibenz(a,h)anthracene. Leafy vegetables growing close to the soil surface are therefore endangered most by a PAH contamination of the soil. The soil-to-plant transfer via “direct contamination” can be reduced to a high degree by covering the contaminated soil with different mulch materials. Systematic PAH transfer via root uptake could not generally be observed. From the reported results, a trigger value in the soil of 1 mg·kg?1 for benzo(a)pyrene is proposed to make a judgement on PAH contaminated soils with regard to the soil-to-plant transfer pathways. Soils with excessive concentrations of benzo(a)pyrene demand special attention when considering the recommendations for the growth and consumption of cultivated vegetables. The “soil”as well as the “deposition pathways” must be integrated into a complete risk assessment of locations with food plant production, especially in urban areas.  相似文献   

18.
The pollution of soil with the pesticide chlordecone (CLD) is a problem for the use of agricultural surfaces even years after its use has been forbidden. Therefore, the exposure of free-ranged animals such as ruminants needs to be investigated in order to assess the risk of contamination of the food chain. Indeed, measured concentrations could be integrated in a lowered extent if the soil binding would reduce the bioavailability of the pesticide. This bioavailability of soil-bound CLD in a heavily polluted andosol has been investigated relatively of CLD given via spiked oil. Twenty-four weaned lambs were exposed to graded doses of 2, 4 or 6 μg CLD/kg body weight during 15 days via the contaminated soil in comparison to spiked oil. The concentration of this pesticide has been determined in two target tissues: blood serum and kidney fat. The relative bioavailability (RBA) corresponds to the slope ratio between the test matrix-contaminated soil- in comparison to the reference matrix oil. The RBA of the soil-bound CLD was not found to significantly differ from the reference matrix oil in lambs meaning that the pesticide ingested by grazing ruminants would not be sequestered by soil binding. Therefore, CLD from soil gets bioavailable within the intestinal level and exposure to contaminated soil has to be integrated in risk assessments.  相似文献   

19.
In many older US cities, lead (Pb) contamination of residential soil is widespread; however, contamination is not uniform. Empirically based, spatially explicit models can assist city agencies in addressing this important public health concern by identifying areas predicted to exceed public health targets for soil Pb contamination. Sampling of 61 residential properties in Baltimore City using field portable X-ray fluorescence revealed that 53 % had soil Pb that exceeded the USEPA reportable limit of 400 ppm. These data were used as the input to three different spatially explicit models: a traditional general linear model (GLM), and two machine learning techniques: classification and regression trees (CART) and Random Forests (RF). The GLM revealed that housing age, distance to road, distance to building, and the interactions between variables explained 38 % of the variation in the data. The CART model confirmed the importance of these variables, with housing age, distance to building, and distance to major road networks determining the terminal nodes of the CART model. Using the same three predictor variables, the RF model explained 42 % of the variation in the data. The overall accuracy, which is a measure of agreement between the model and an independent dataset, was 90 % for the GLM, 83 % for the CART model, and 72 % for the RF model. A range of spatially explicit models that can be adapted to changing soil Pb guidelines allows managers to select the most appropriate model based on public health targets.  相似文献   

20.

Background

In the past, cases of PCDD/F and PCB contamination exceeding limits in food from animal origin (eggs, meat or milk) were mainly caused by industrially produced feed. But in the last decade, exceedances of EU limit values were discovered more frequently for PCDD/Fs or dioxin-like(dl)-PCBs from free range chicken, sheep, and beef, often in the absence of any known contamination source.

Results

The German Environment Agency initiated a project to elucidate the entry of PCBs and PCDD/Fs in food related to environmental contamination. This paper summarizes the most important findings. Food products from farm animals sensitive to dioxin/PCB exposure—suckling calves and laying hens housed outdoor—can exceed EU maximum levels at soil concentrations that have previously been considered as safe. Maximum permitted levels can already be exceeded in beef/veal when soil is contaminated around 5 ng PCB-TEQ/kg dry matter (dm). For eggs/broiler, this can occur at a concentration of PCDD/Fs in soil below 5 ng PCDD/F–PCB-TEQ/kg dm. Egg consumers—especially young children—can easily exceed health-based guidance values (TDI). The soil–chicken egg exposure pathway is probably the most sensitive route for human exposure to both dl-PCBs and PCDD/Fs from soil and needs to be considered for soil guidelines. The study also found that calves from suckler cow herds are most prone to the impacts of dl-PCB contamination due to the excretion/accumulation via milk. PCB (and PCDD/F) intake for free-range cattle stems from feed and soil. Daily dl-PCB intake for suckler cow herds must in average be less than 2 ng PCB-TEQ/day. This translates to a maximum concentration in grass of 0.2 ng PCB-TEQ/kg dm which is less than 1/6 of the current EU maximum permitted level. This review compiles sources for PCDD/Fs and PCBs relevant to environmental contamination in respect to food safety. It also includes considerations on assessment of emerging POPs.

Conclusions

The major sources of PCDD/F and dl-PCB contamination of food of animal origin in Germany are (1) soils contaminated from past PCB and PCDD/F releases; (2) PCBs emitted from buildings and constructions; (3) PCBs present at farms. Impacted areas need to be assessed with respect to potential contamination of food-producing animals. Livestock management techniques can reduce exposure to PCDD/Fs and PCBs. Further research and regulatory action are needed to overcome gaps. Control and reduction measures are recommended for emission sources and new listed and emerging POPs to ensure food safety.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号