首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
非活体生物质对水中活性艳红X-3B的吸附研究   总被引:9,自引:3,他引:6  
研究了4种非活体生物质(米酒糟、花生壳、柚子皮、稻草秸秆)对模拟废水中活性艳红X-3B的吸附条件及吸附机理。结果表明,活性艳红X-3B初始浓度为100 mg/L、pH为1.0~2.0、吸附剂浓度为10 mg/L时,4种吸附剂对活性艳红X-3B的吸附率可达到80%。吸附在60 min左右达平衡后最大吸附量的顺序为:米酒糟(58.8 mg/g)花生壳(28.0mg/g)柚子皮(23.6 mg/g)稻草秸秆(19.5 mg/g)。在达最大吸附率时,米酒糟的用量可减少一半、pH范围可宽为1.0~6.0,且吸附量是另三者的2倍以上。综合比较,米酒糟具有较强的吸附废水中活性艳红X-3B的能力,可作为废水中活性染料的吸附剂使用。而花生壳、柚子皮和稻草秸秆的吸附能力相对较弱,不是理想的吸附材料。数学模型模拟表明,米酒糟和柚子皮的吸附过程更符合Freundlich方程,而花生壳和稻草秸秆更符合Langmuir方程;动力学研究表明4种吸附剂的吸附拟合更符合拟二级动力学方程。  相似文献   

2.
采用共沉淀法合成出一系列镁铝摩尔比不同的碳酸根型水滑石(LDHs),经500℃高温煅烧制备出镁铝复合氧化物CLDH,并用X-射线、红外光谱对它们进行表征。考查了吸附剂投加量、反应时间、初始pH值等因素对LDHs和CLDH处理阴离子染料活性艳红X-3B模拟废水效果的影响,并对吸附机理进行探讨。实验结果表明:以镁铝摩尔比为3:1时制得的水滑石对活性艳红X-3B溶液的脱色效果最好。水滑石LDHs及其焙烧产物CLDH对活性艳红X-3B染料均具有较好的吸附性能,最佳反应时间分别为60min和30min;在较宽的pH范围内二者的脱色性能稳定,且CLDH对该染料的吸附效果要优于LDHs。LDHs及CLDH对活性艳红X-3B的吸附结果符合Langmuir吸附等温式,25℃下饱和吸附量分别为263.77mg/g和875.23mg/g。LDHs及CLDH的吸附机理分别为离子交换和层状结构重建。饱和吸附后的CLDH用高温热解法再生,吸附性能良好,随再生次数增多,脱色率下降。  相似文献   

3.
采用共沉淀法合成出一系列镁铝摩尔比不同的碳酸根型水滑石(LDHs),经500℃高温煅烧制备出镁铝复合氧化物CLDH,并用X-射线、红外光谱对它们进行表征。考查了吸附剂投加量、反应时间、初始pH值等因素对LDHs和CLDH处理阴离子染料活性艳红X-3B模拟废水效果的影响,并对吸附机理进行探讨。实验结果表明:以镁铝摩尔比为3∶1时制得的水滑石对活性艳红X-3B溶液的脱色效果最好。水滑石LDHs及其焙烧产物CLDH对活性艳红X-3B染料均具有较好的吸附性能,最佳反应时间分别为60 min和30 min;在较宽的pH范围内二者的脱色性能稳定,且CLDH对该染料的吸附效果要优于LDHs。LDHs及CLDH对活性艳红X-3B的吸附结果符合Langmuir吸附等温式,25℃下饱和吸附量分别为263.77 mg/g和875.23 mg/g。LDHs及CLDH的吸附机理分别为离子交换和层状结构重建。饱和吸附后的CLDH用高温热解法再生,吸附性能良好,随再生次数增多,脱色率下降。  相似文献   

4.
利用活性炭吸附法及基于SO-4·的高级氧化技术,以活性炭和过渡金属氧化物Cu O为催化剂,催化过硫酸盐产生SO-4·降解活性艳红X-3B染料。结果表明,活性炭负载Cu O催化过硫酸盐可有效去除活性艳红X-3B,色度去除率达90%以上,显著优于活性炭(21.53%)、过硫酸盐(46.88%)、活性炭催化过硫酸盐(53.67%)(P0.05)。活性艳红X-3B的催化降解效果受Cu O负载量、pH、过硫酸盐投加量、温度的影响。单因素法研究表明,各因素最佳条件为:负载量活性炭与Cu O质量比为1∶5,投加量0.2 g,pH为3,过硫酸钠投加量0.2 g,反应温度40℃,活性艳红X-3B的色度去除率分别达到91.34%、95.57%、98.54%和98.81%,COD去除率分别为82.73%、88.89%、87.60%和93.46%。  相似文献   

5.
Fe0-厌氧微生物体系处理活性艳红X-3B的试验研究   总被引:1,自引:0,他引:1  
采用间歇式摇床试验,研究了葡萄糖共基质条件下Fe0-厌氧微生物体系中Fe0投加量、pH值、染料初始浓度对活性艳红X-3B模拟废水脱色率的影响,比较了Fe0-厌氧微生物、纯厌氧微生物及纯Fe03种体系中废水的脱色效果.结果表明:Fe0-厌氧微生物体系中初始浓度(50~500 mg/L)对活性艳红X-3B的脱色率影响不大;而Fe0投加量、pH值存在一个最佳范围;当Fe0投加量为260 mg/L,pH值为6.0,污泥浓度为0.35 g VSS/L,停留时间约为30 h时,体系中活性艳红X-3B的脱色率可达90%左右,比相同试验条件下纯Fe0、纯厌氧微生物体系达到此脱色率所需时间分别缩短了约1/2、7/10.在Fe0-厌氧微生物体系中,由紫外可见分光光度分析可推测活性艳红X-3B的脱色机理主要是其偶氮键发生断裂,生成苯胺和萘类物质,而且苯胺和萘类物质能得到进一步降解.  相似文献   

6.
采用间歇式摇床试验,研究了葡萄糖共基质条件下Fe^0-厌氧微生物体系中Fe^0投加量、pH值、染料初始浓度对活性艳红X-3B模拟废水脱色率的影响,比较了Fe^0-厌氧微生物、纯厌氧微生物及纯Fe^0 3种体系中废水的脱色效果。结果表明:Fe^0-厌氧微生物体系中初始浓度(50~500mg/L)对活性艳红X-3B的脱色率影响不大;而Fe^0投加量、pH值存在一个最佳范围;当Fe^0投加量为260mg/L,pH值为6.0,污泥浓度为0.35gVSS/L,停留时间约为30h时,体系中活性艳红X-3B的脱色率可达90%左右,比相同试验条件下纯Fe^0、纯厌氧微生物体系达到此脱色率所需时间分别缩短了约1/2、7/10。在Fe^0-厌氧微生物体系中,由紫外可见分光光度分析可推测活性艳红X-3B的脱色机理主要是其偶氮键发生断裂,生成苯胺和萘类物质,而且苯胺和萘类物质能得到进一步降解。  相似文献   

7.
探究了超声前处理活性艳红X-3B染料废水强化活性炭吸附降解性能及不同超声参数的影响规律,包括超声功率和超声时间。研究结果表明,超声前处理活性艳红X-3B染料废水可通过空化效应使有机大分子裂解为小分子易于被活性炭吸附,同时可强化其到活性炭微孔中传输,提高了活性炭吸附降解性能,最佳超声功率为320 W。浓度越高,所需超声时间越长,当超声达到一定时间后,继续超声不会影响染料分子的吸附。超声前处理虽然不会改变吸附平衡时间,但可有效增加活性炭处理活性艳红X-3B染料废水的饱和吸附量。  相似文献   

8.
缺氧-好氧生物滤池中高效菌对活性红KN-3B的降解特性   总被引:1,自引:1,他引:0  
为了研究高效脱色菌在缺氧好氧生物滤池(A/O biofilter)中对偶氮染料的降解特性,以活性红KN-3B(C.I. reactive red 180)为降解对象,缺氧生物滤池以火山碎石为填料,接种高效脱色菌CK3柯氏柠檬酸杆菌启动,好氧生物滤池以牡蛎壳为填料,接种污水处理厂活性污泥启动。试验考察了不同工况下缺氧-好氧生物滤池对色度和COD的去除效果,结果表明:生物滤池中微生物对偶氮染料活性红KN-3B的脱色和对COD降解的最适pH条件为弱酸性;缺氧滤池中高效菌对色度的去除需要外加碳源,且增加外加碳源有助于脱色率的提高;该高效菌为耐盐菌,当进水NaCl浓度达30 g/L时,色度去除率仍可达93%以上;当染料负荷达500 mg/L时,脱色率仍可达95%。通过紫外-可见扫描图谱分析初步推断CK-3柯氏柠檬酸杆菌对偶氮染料活性红KN-3B的脱色主要是生物降解作用。  相似文献   

9.
三维粒子电极处理染料废水的效能及机制   总被引:1,自引:0,他引:1  
以自制的负载Sb掺杂Sn O2的陶瓷颗粒为粒子电极,构建三维电极体系,对其处理活性艳红X-3B废水的效能进行研究,并借助于循环伏安曲线、羟基自由基的荧光光谱检测技术对三维粒子电极体系的电催化氧化机制进行研究。结果表明,优化槽电压为13 V,处理时间为60 min时,三维电极体系对活性艳红X-3B废水的COD去除率和相应能耗分别为85.6%与16.8 k W·h/(kg COD),与二维电极体系相比COD去除率提高了32.9%,能耗降低了33.3%。UV-Vis吸收光谱分析表明电催化氧化技术可以破坏活性艳红X-3B分子中的偶氮键、苯环和萘环,将大分子降解为小分子。电催化氧化机制研究表明,在本实验条件下三维电极主要通过间接氧化而不是直接氧化提高电催化氧化效能,即在三维粒子电极体系中羟基自由基的产生量多于二维电极体系,从而实现高效低耗处理活性艳红X-3B废水。  相似文献   

10.
氧化亚铜光催化降解活性艳红的研究   总被引:1,自引:0,他引:1  
冯国刚 《环境工程学报》2010,4(12):2823-2826
制备了纳米SiO2-Cu2O复合氧化物,并对其进行表征。研究了SiO2-Cu2O在可见光照射下光催化降解活性艳红X-3B的性能。考察了催化剂组成、活性艳红浓度、催化剂用量、H2O2等对光催化反应的影响,还研究了Cu2O光催化反应动力学。结果表明,用SiO2摩尔含量为2%的SiO2-Cu2O光催化降解活性艳红,反应4 h,活性艳红降解率达到85%,降解反应为一级反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号