首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead removal from contaminated water using mineral adsorbents   总被引:3,自引:0,他引:3  
This study records experiments undertaken to determine the suitable conditions for the use of naturally occurring minerals (talc, chalcopyrite and barite) as an adsorbent for the removal of lead ions from liquid wastes. The adsorption of lead ions from solutions containing different initial lead concentrations (50, 100, 200, 400, 600, 800 and 1000 mg l–1 Pb as lead nitrate) using different size fractions (<63 m, 63–150 m) of talc, chalcopyrite and barite at different pH (3, 5, 7 and 9) and different adsorption times (24, 48, 72 and 96 hr) was examined. The results revealed that of the studied minerals, the chalcopyrite fraction at 63–150 m showed the highest adsorption capacity. The adsorption data of Pb ions was also analyzed with the help of the Langmuir and Freundlich models to evaluate the mechanistic parameters associated with the adsorption process. The adsorption isotherms obtained from the Langmuir and Freundlich equations were generally linear and the adsorption of Pb by the studied minerals was correlated with the adsorption maximum and binding energy constant of the Langmuir equation and equilibrium partition constant and binding partition coefficient of the Freundlich equation. It was concluded that the equilibrium time of adsorption was 72 hr at an optimum pH from 7 to 9. This technique might be successfully used for the removal of lead ions from liquid industrial wastes and wastewater.  相似文献   

2.
A novel cellulose-based anion exchanger (Cell-AE) with tertiary amine functionality was synthesized by graft polymerization reaction of cellulose and glycidyl methacrylate using N,N′-methylene-bis-acrylamide as a crosslinker and benzoyl peroxide as an initiator, followed by dimethylamine (amination) and acid (HCl) treatment. The chemical modification was confirmed by infrared spectroscopy and CHN analysis. The anion exchanger was used in batch processes to study AS(V) adsorption in solutions. The operating variables studied were pH, contact time, initial As(V) concentration, sorbent mass, and ionic strength. The process was affected by solution pH with an optimum adsorption occurring at pH 6.0. Adsorption equilibrium was achieved within 1 h. Increasing ionic strength of solution negatively affected the arsenic uptake. The adsorption process performed more than 99.0% of As(V) removal from an initial concentration of 25.0 mg/L. The process of adsorption followed pseudo-second-order kinetics. The adsorption equilibrium isotherm data were analyzed using the Langmuir, Freundlich, Redlich–Peterson and Langmuir–Freundlich equations. The Langmuir–Freundlich isotherm described the adsorption data over the concentration range 25–400 mg/L. The adsorption mechanism appears to be a ligand-exchange process. A simulated groundwater sample was treated with Cell-AE to demonstrate its efficiency in removing As(V). The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.  相似文献   

3.
The adsorption properties and mechanisms of a cationic-polymer/bentonite complex (EPI-DMA/bentonite), prepared from polyepicholorohydrin-dimethylamine and bentonite, for non-ionic dyes (Disperse Blue SBL and Vat Scarlet R) and anionic dyes (Reactive Violet K-3R and Acid Dark Blue 2G) were investigated in this study. The solution pH, presence of salt and surfactant can significantly affect the dye removal efficiency. The equilibrium data were analyzed using the Langmuir and Freundlich models. The Langmuir model is the most suitable to describe non-ionic dye adsorption, but for anionic dyes the Freundlich model is best. The kinetic data for the adsorption of different dyes were analyzed using pseudo first- and second-order equations, and the experimental data conformed to the pseudo second-order kinetic model better. The possibility of intraparticle diffusion was also examined by using the intraparticle diffusion equation. The single-stage batch adsorber design for the adsorption of both types of dyes onto EPI-DMA/bentonite was studied based on the Langmuir isotherm model for non-ionic dyes and the Freundlich isotherm model for anionic dyes. The results showed that the required amount of EPI-DMA/bentonite for 95% dye removal in 5 L dye solution with a concentration of 50 mg/L is 378.0 g for DB SBL, 126.5 g for VS R, 9.7 g for RV K-3R and 15.5 g for ADB 2G.  相似文献   

4.
Adsorption of malachite green (MG) from aqueous solution onto treated ginger waste (TGW) was investigated by batch and column methods. The effect of various factors such as initial dye concentration, contact time, pH and temperature were studied. The maximum adsorption of MG was observed at pH 9. Langmuir and Freundlich isotherms were employed to describe the MG adsorption equilibrium. The monolayer adsorption capacities were found to be 84.03, 163.9 and 188.6 mg/g at 30, 40 and 50 °C, respectively. The values of thermodynamic parameters like ΔG°, ΔH° and ΔS° indicated that adsorption was spontaneous and endothermic in nature. The pseudo second order kinetic model fitted well in correlation to the experimental results. Rechienberg's equation was employed to determine the mechanism of adsorption. The results indicated that film diffusion was a major mode of adsorption. The breakthrough capacities were also investigated.  相似文献   

5.
Chitosan-tripolyphosphate (CTPP) beads were synthesized, characterized and were used for the adsorption of Pb(II) and Cu(II) ions from aqueous solution. The effects of initial pH, agitation period, adsorbent dosage, different initial concentrations of heavy metal ions and temperature were studied. The experimental data were correlated with the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The maximum adsorption capacities of Pb(II) and Cu(II) ions in a single metal system based on the Langmuir isotherm model were 57.33 and 26.06 mg/g, respectively. However, the beads showed higher selectivity towards Cu(II) over Pb(II) ions in the binary metal system. Various thermodynamic parameters such as enthalpy (ΔH°), Gibbs free energy (ΔG°) and entropy (ΔS°) changes were computed and the results showed that the adsorption of both heavy metal ions onto CTPP beads was spontaneous and endothermic in nature. The kinetic data were evaluated based on the pseudo-first and -second order kinetic and intraparticle diffusion models. Infrared spectra were used to elucidate the mechanism of Pb(II) and Cu(II) ions adsorption onto CTPP beads.  相似文献   

6.
Natural, acid and base modified kaolin clays were studied for the sake of phenol and 4-chlorophenol removal from aqueous environments and their application to real ground and industrial wastewater samples. Scanning electron microscope (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD), Thermo Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA), and Surface area analysis were employed for characterization of the adsorbents microstructure. Operating factors such as adsorbent dose, solution pH, initial phenol concentration, and contact time were studied. The experimental data displayed that the increase of the adsorbent dose, contact time, and pH value from 2 to 7 increases the efficiency of the removal process. Optimal conditions for phenolic removal were; contact time of 300 min, primary phenol solution of 25 mg/L, pH 7 and 2.5 g/L as an appropriate adsorbent dose using crude (natural), acid modified and base modified kaolin clays. The higher phenolic removal efficiencies were obtained at 5 mg/L as 90, 97, 96.2%, respectively, for the adsorbents in the previously mentioned order. The adsorption capacity in the removal of phenol and 4-chlorophenol were 7.481 and 4.195, 8.2942 and 3.211, and 8.05185 and 18.565 mg/g, respectively, for the adsorbents in the same mentioned order. The adsorption equilibrium data were fitted and analyzed with four isotherm models, namely, Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm equations. The adsorption process of phenol on studied adsorbents was exothermic, spontaneous and thermodynamically favorable proved by the negative values of their thermodynamic parameters ΔH° and ΔG°. The correlation coefficient (R2) for all concentrations was higher than 0.94, which indicates that in the studied system, the data suitably fit the first-order kinetics. The % desorption capacity was amounted to 96%, 91.11%, and 87.06% of adsorbed phenol, respectively, for the adsorbents in the previous order using 0.1N NaOH and 10% V/V ethanol solutions as eluents at 25°C, indicating the reusability of the adsorbents. Kaolin and its modified forms can be introduced as eco-friendly and low-cost adsorbents in water remediation implementation.  相似文献   

7.
8.
This paper discusses the adsorption capacity of silica gel sludge for phenol removal from aqueous solution. Kinetic experiments showed that phenol adsorption was completed after 2 h. Adsorption isotherms were measured for phenol from aqueous solution onto silica gel sludge under various pHs and temperatures. Results showed that the adsorption capacities for phenol was increased as pH decreased from 6.5 to 2. Temperature also was found to affect the adsorption isotherm. As temperature increases from 30 to 50°C, the adsorption capacity increases. The adsorption equilibrium of phenol on silica gel sludge was described by the linear Freundlich and Langmuir models. Furthermore, results showed that the isotherm parameters fit both linearized Langmuir and Freundlich adsorption isotherms. The Freundlich and Langmuir parameters at optimum pH was found as K f=2.89, 1/n=0.23 and K d=22.0, q m=7.98, respectively. Whereas, for those at optimum temperature it was observed as K f=2.87, 1/n=0.16 and K d=20.93, q m=7.91, respectively.  相似文献   

9.
Removal of chromium (VI) from aqueous solution using walnut hull   总被引:2,自引:0,他引:2  
In this study, removal of chromium (VI) from aqueous solution by walnut hull (a local low-cost adsorbent) was studied. The extent of adsorption was investigated as a function of solution pH, contact time, adsorbent and adsorbate concentration, reaction temperature and supporting electrolyte (sodium chloride). The Cr (VI) removal was pH-dependent, reaching a maximum (97.3%) at pH 1.0. The kinetic experimental data were fitted to the first-order, modified Freundlich, intraparticle diffusion and Elovich models and the corresponding parameters were obtained. A 102.78 kJ/mol Ea (activation energy) for the reaction of chromium (VI) adsorption onto walnut indicated that the rate-limiting step in this case might be a chemically controlled process. Both the Langmuir and Freundlich isotherms were suitable for describing the biosorption of chromium (VI) onto walnut hull. The uptake of chromium (VI) per weight of adsorbent increased with increasing initial chromium (VI) concentration up to 240-480 mg/L, and decreased sharply with increasing adsorbent concentration ranging from 1.0 to 5.0 g/L. An increase in sodium chloride (as supporting electrolyte) concentration was found to induce a negative effect while an increase in temperature was found to give rise to a positive effect on the chromium (VI) adsorption process. Compared to the various other adsorbents reported in the literature, the walnut hull in this study shows very good promise for practical applicability.  相似文献   

10.
Zeolitic materials have been prepared from coal fly ash as well as from a SiO2–Al2O3 system upon NaOH fusion treatment, followed by subsequent hydrothermal processing at various NaOH concentrations and reaction times. During the preparation process, the starting material initially decomposed to an amorphous form, and the nucleation process of the zeolite began. The carbon content of the starting material influenced the formation of the zeolite by providing an active surface for nucleation. Zeolite A (Na-A) was transformed into zeolite X (Na-X) with increasing NaOH concentration and reaction time. The adsorption isotherms of the obtained Na-X based on the characteristics required to remove heavy ions such as Ni2+, Cu2+, Cd2+ and Pb2+ were examined in multi-metal systems. Thus obtained experimental data suggests that the Langmuir and Freundlich models are more accurate compared to the Dubinin–Kaganer–Radushkevich (DKR) model. However, the sorption energy obtained from the DKR model was helpful in elucidating the mechanism of the sorption process. Further, in going from a single- to multi-metal system, the degree of fitting for the Freundlich model compared with the Langmuir model was favored due to its basic assumption of a heterogeneity factor. The Extended-Langmuir model may be used in multi-metal systems, but gives a lower value for equilibrium sorption compared with the Langmuir model.  相似文献   

11.
12.
This study investigated the removal of Pb(II) from aqueous solutions by a maize (Zea mays) stalk sponge. Equilibrium and kinetic models for Pb(II) sorption were developed by considering the effect of the contact time and concentration at the optimum pH of 6 ± 0.2. The Freundlich model was found to describe the sorption energetics of Pb(II) by Z. mays stalk sponge, and a maximum Pb(II) loading capacity of 80 mg g?1 was determined. The kinetic parameters were obtained by fitting data from experiments measuring the effect of contact time on adsorption capacity into pseudo-first and second-order equations. The kinetics of Pb(II) sorption onto Z. mays biosorbent were well defined using linearity coefficients (R2) by the pseudo-second-order equation (0.9998). The results obtained showed that Zea may stalk sponge was a useful biomaterial for Pb(II) sorption and that pH has an important effect on metal biosorption capacity.  相似文献   

13.
In the present study, an adsorbent was prepared from tamarind seeds and used after activation for the removal of Cr(VI) from aqueous solutions. The tamarind seeds were activated by treating them with concentrated sulfuric acid (98% w/w) at a temperature of 150 °C. The adsorption of Cr(VI) was found to be maximum at low values of initial pH in the range of 1–3. The adsorption process of Cr(VI) was tested with Langmuir, Freundlich, Redlich–Peterson, Koble–Corrigan, Tempkin, Dubinin–Radushkevich and Generalized isotherm models. Application of the Langmuir isotherm to the system yielded a maximum adsorption capacity of 29.7 mg/g at an equilibrium pH value ranging from 1.12 to 1.46. The adsorption process followed second-order kinetics and the corresponding rate constants obtained were 2.605 × 10−3, 0.818 × 10−3, 0.557 × 10−3 and 0.811 × 10−3 g/mg min−1 for 50, 200, 300 and 400 mg/L of initial Cr(VI) concentration, respectively. The regenerated activated tamarind seeds showed more than 95% Cr(VI) removal of that obtained using the fresh activated tamarind seeds. A feasible solution is proposed for the disposal of the contaminants (acid and base solutions) containing high concentrations of Cr(VI) obtained during the regeneration (desorption) process.  相似文献   

14.
改性玉米秸秆吸附去除废水中四环素的研究   总被引:1,自引:0,他引:1  
应用平衡吸附法,研究了不同投加量(改性玉米秸秆)、温度及pH条件下,改性玉米秸秆对水体中四环素的吸附作用,并利用等温曲线及吸附动力学方程对试验结果进行了拟合。结果表明:在吸附剂用量0.4g,温度30℃,振荡时间30min,pH值7的条件下,对水体中四环素浓度为50.136mg/L的吸附率可达93.4%。四环素废水吸附均符合Langmuir及Freundlich等温模式。但Langmuir方程拟合得较好,Elovich方程能更好地拟舍改性玉米秸秆对水体中四环素的吸附动力学曲线。  相似文献   

15.
The equilibrium sorption of copper ions from aqueous solution using a new adsorbent, palm kernel fibre, has been studied. Palm kernel fibre is obtained in large amounts as a waste product of palm oil production. Batch equilibrium studies were carried out and system variables such as solution pH, sorbent dose, and sorption temperature were varied. The equilibrium sorption data was then analyzed using the Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin isotherms. The fit of these isotherm models to the equilibrium sorption data was determined, using the linear coefficient of determination, r2, and the non-linear Chi-square, χ2 error analysis.The results revealed that sorption was pH dependent and increased with increasing solution pH above the pHPZC of the palm kernel fibre with an optimum dose of 10 g/dm3. The equilibrium data were found to fit the Langmuir isotherm model best, with a monolayer capacity of 3.17 × 10?4 mol/g at 339 K. The sorption equilibrium constant, Ka, increased with increasing temperature, indicating that bond strength between sorbate and sorbent increased with temperature and sorption was endothermic. This was confirmed by the increase in the values of the Temkin isotherm constant, B1, with increasing temperature. The Dubinin–Radushkevich (D–R) isotherm parameter, free energy, E, was in the range of 15.7–16.7 kJ/mol suggesting that the sorption mechanism was ion exchange. Desorption studies showed that a high percentage of the copper was desorbed from the adsorbent using acid solutions (HCl, HNO3 and CH3COOH) and the desorption percentage increased with acid concentration. The thermodynamics of the copper ions/palm kernel fibre system indicate that the process is spontaneous and endothermic.  相似文献   

16.
The present study investigated the effectiveness of an inexpensive and ecofriendly alumino silicate clay mineral, sericitic pyrophyllite, as an adsorbent for the possible application in the removal of some divalent toxic metal cations such as Pb(2+), Cu(2+)and Zn(2+) from aqueous systems. Batch scale equilibrium adsorption studies were carried out for a wide range of initial concentration from 24.1 to 2410mumolL(-1) for lead, 78.65 to 7865mumolL(-1) for copper and 76.45 to 7645mumolL(-1) for zinc solutions. The removal of Pb(2+) was almost complete at low concentration (maximum lead removal capacity, LRC, 32mg of lead/g of pyrophyllite) with 10gL(-1) of adsorbent in a 30min equilibration time. The effects of temperature on adsorption of heavy metal ions were studied. The applicability of the Langmuir, Freundlich and Dubinin-Radushkevich adsorption models in each case of lead, copper and zinc adsorption was examined separately at different temperatures. The adsorption process was found to be endothermic and the Freundlich adsorption model was found to represent the data at different temperatures more suitably.  相似文献   

17.
Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures.As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g?1 for copper(II) and from 23.74 to 26.27 for lead(II).Activation energy was higher for lead(II) (22.40 kJ mol?1) than for copper(II) (20.36 kJ mol?1). The free energy of activation was higher for lead(II) than for copper(II) and the values of ΔH* and ΔS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption.Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin–Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism.  相似文献   

18.
研究了pH值、吸附接触时间、铜离子的初始浓度及活性炭纤维(ACF)的投加量对活性炭纤维吸附Cu2+的影响,并选取了最佳的实验条件。用Langmuir方程和Freundlich方程拟合活性炭纤维对Cu2+吸附等温线,结果表明:活性炭纤维吸附Cu2+更符合Langmuir等温式,其相关系数为0.9995,以单分子层吸附为主。对活性炭纤维改性能明显提高对Cu2+的吸附,其中效果最佳的吸附量从4.8mg/g增加到17.32mg/g,提高了3.6倍。  相似文献   

19.
A laboratory study was conducted to investigate the efficiency of hydroxyapatite (HAP) towards removal of nitrate from synthetic nitrate solution. In the present research HAP synthesized from egg-shell was characterized using SEM, XRD, FTIR and TGA–DSC. The removal of nitrate was 96% under neutral conditions, using 0.3 g of adsorbent in 100 mL of nitrate solution having an initial concentration of 100 mg/L. An adsorption kinetic study revealed that the adsorption process followed first order kinetics. Adsorption data were fitted to a linearly transformed Langmuir isotherm with correlation coefficient (R2) > 0.98. Thermodynamic parameters were also calculated to study the effect of temperature on the removal process. In order to understand the adsorption type, equilibrium data were tested with the Dubinin–Radushkevich isotherm. The process was rapid and equilibrium was established within the first 40 min.  相似文献   

20.
The potential of octodecyl trimethyl ammonium chloride (OTMAC)-modified attapulgite (AT) for phenol adsorption from aqueous solutions was studied. The comparison of natural AT and modified AT showed that it is possible to utilize the sonication-modified OTMAC-AT in the treatment of phenol-contaminated wastewaters. Batch sorption studies were carried out to evaluate the effect of contact time, shaking frequency, temperature and the amount of AT. The results showed that in a lab-scale reactor, at room temperature, with an amount of the modified AT added (2.5 g), and a shaking frequency of 140 rev/min, the adsorption rate of phenol could be 60.4% for a duration of 60 min. The sorption kinetics were described by a pseudo-second-order model, and the values of k and q(e) were 1.367 mg/ig min and 0.7901 ig/mg, respectively. The analysis of equilibrium data showed that the Freundlich isotherms were found to be applicable for the adsorption equilibrium data. K and 1/n were estimated to be 14.53 and 0.8438, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号