首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study develops and tests a novel optimization method for optimally selecting and sizing stormwater control measures (SCMs) in urban landscapes for selected design storms. The developed methodology yields SCMs that capture and retain stormwater via onsite percolation, remove stormwater pollutants, and minimize stormwater control expenditures. The resulting environmental optimization problem involves integer and real variables imbedded in an objective function that is subjected to multiple constraints. This study's methodology aims at practicality and ease of implementation in the solution of the SCM sizing and selection optimization problem while taking into account the main factors that govern stormwater management in urban landscapes. The near‐optimal global solution of the SCM selection and design problem is obtained with nonlinear programming and verified with the average of multiple solutions calculated with multiple runs of an optimization evolutionary algorithm. The developed methodology is illustrated with one stormwater project in the City of Los Angeles, California.  相似文献   

2.
Stephens, Daniel B., Mark Miller, Stephanie J. Moore, Todd Umstot, and Deborah J. Salvato, 2011. Decentralized Groundwater Recharge Systems Using Roofwater and Stormwater Runoff. Journal of the American Water Resources Association (JAWRA) 48(1): 134‐144. DOI: 10.1111/j.1752‐1688.2011.00600.x Abstract: Stormwater capture for groundwater recharge in urban areas is usually conducted at the regional level by water agencies. Field and modeling studies in New Mexico indicate that stormwater diverted to retention basins may recharge about 50% of precipitation that falls on the developed area, even in dry climates. Comparable volumes of recharge may be expected at homes, subdivisions, or commercial properties with low‐impact development (LID) technologies for stormwater control that promote recharge over evapotranspiration. Groundwater quality has not been significantly impacted at sites that have been recharging stormwater to aquifers for decades. Distributed recharge systems may be a good alternative to centralized regional facilities where there is limited land for constructing spreading basins or little funding for new infrastructure. LID technologies borrowed from stormwater managers are important tools for groundwater managers to consider to enhance recharge.  相似文献   

3.
Research increasingly highlights cause and effect relationships between urbanization and stream conditions are complex and highly variable across physical and biological regions. Research also demonstrates stormwater runoff is a key causal agent in altering stream conditions in urban settings. More specifically, thermal pollution and high salt levels are two consequences of urbanization and subsequent runoff. This study describes a demonstration model populated with data from a high gradient headwaters stream. The model was designed to explain surface water‐groundwater dynamics related to salinity and thermal pollution. Modeled scenarios show long‐term additive impacts from salt application and suggest reducing flow rates, as stormwater management practices are typically designed to do, have the potential to greatly reduce salt concentrations and simultaneously reduce thermal pollution. This demonstration model offers planners and managers reason to be confident that stormwater management efforts can have positive impacts.  相似文献   

4.
Abstract: The growing impact of urban stormwater on surface‐water quality has illuminated the need for more accurate modeling of stormwater pollution. Water quality based regulation and the movement towards integrated urban water management place a similar demand for improved stormwater quality model predictions. The physical, chemical, and biological processes that affect stormwater quality need to be better understood and simulated, while acknowledging the costs and benefits that such complex modeling entails. This paper reviews three approaches to stormwater quality modeling: deterministic, stochastic, and hybrid. Six deterministic, three stochastic, and three hybrid models are reviewed in detail. Hybrid approaches show strong potential for reducing stormwater quality model prediction error and uncertainty. Improved stormwater quality models will have wide ranging benefits for combined sewer overflow management, total maximum daily load development, best management practice design, land use change impact assessment, water quality trading, and integrated modeling.  相似文献   

5.
Abstract: The quality and quantity of residential stormwater runoff from a control, traditional, and low impact development (LID) watershed were compared in a paired watershed study. A traditional neighborhood was built using typical subdivision standards while a LID design was constructed with best management practices including grass swales, cluster housing, shared driveways, rain gardens, and a narrower pervious concrete‐paver road. Weekly, flow‐weighted, composite samples of stormwater were analyzed for nitrate + nitrite‐nitrogen (NO3 + NO2‐N), ammonia‐nitrogen (NH3‐N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS). Monthly composite samples were analyzed for total copper (Cu), lead (Pb), and zinc (Zn). Mean weekly storm flow increased (600x) from the traditional watershed in the postconstruction period. Increased exports of TKN, NO3 + NO2‐N, NH3‐N, TP, Cu, Zn, and TSS in runoff were associated with the increased storm flow. Postconstruction storm flow in the LID watershed was reduced by 42% while peak discharge did not change from preconstruction conditions. Exports were reduced from the LID watershed for NH3‐N, TKN, Pb, and Zn, while TSS and TP exports increased.  相似文献   

6.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

7.
Woltemade, Christopher J., 2010. Impact of Residential Soil Disturbance on Infiltration Rate and Stormwater Runoff. Journal of the American Water Resources Association (JAWRA) 46(4): 700-711. DOI: 10.1111/j.1752-1688.2010.00442.x Abstract: Soil disturbances such as excavation and compaction in residential developments affect lawn infiltration rates and stormwater runoff. These effects were investigated via measuring saturated infiltration rates at 108 residential sites and 18 agricultural sites near Shippensburg, south-central Pennsylvania, using a double-ring infiltrometer. Residential sites included four neighborhoods distributed across three soil series classified as hydrologic soil group (HSG) B. Additional parcel data included date of house construction, percentage impervious area, lawn condition, and woody vegetation condition. Measured infiltration rates ranged from 0 to >40 cm/hour. Analysis of variance indicated significantly different mean infiltration rates (p < 0.001) for lots constructed pre-2000 (9.0 cm/hour) and those constructed post-2000 (2.8 cm/hour). Test results were used to determine a “field-tested” HSG for each site, representing disturbed soil conditions. Stormwater runoff was estimated from residential lots for a range of 24-hour design storms using the TR-55 model and several alternative methods of determining curve numbers, including five different representations of soil conditions. Curve numbers and stormwater runoff were substantially higher when based on field-tested HSGs for lots constructed post-2000 compared with lots built pre-2000 and when based on the HSG for undisturbed soils, documenting the magnitude of possible error in stormwater runoff models that neglect soil disturbance.  相似文献   

8.
Mittelstet, Aaron R., Michael D. Smolen, Garey A. Fox, and Damian C. Adams, 2011. Comparison of Aquifer Sustainability Under Groundwater Administrations in Oklahoma and Texas. Journal of the American Water Resources Association (JAWRA) 1‐8. DOI: 10.1111/j.1752‐1688.2011.00524.x Abstract: We compared two approaches to administration of groundwater law on a hydrologic model of the North Canadian River, an alluvial aquifer in northwestern Oklahoma. Oklahoma limits pumping rates to retain 50% aquifer saturated thickness after 20 years of groundwater use. The Texas Panhandle Groundwater Conservation District’s (GCD) rules limit pumping to a rate that consumes no more than 50% of saturated thickness in 50 years, with reevaluation and readjustment of permits every 5 years. Using a hydrologic model (MODFLOW), we simulated river‐groundwater interaction and aquifer dynamics under increasing levels of “development” (i.e., increasing groundwater withdrawals). Oklahoma’s approach initially would limit groundwater extraction more than the GCD approach, but the GCD approach would be more protective in the long run. Under Oklahoma rules more than half of aquifer storage would be depleted when development reaches 65%. Reevaluation of permits under the Texas Panhandle GCD approach would severely limit pumping as the 50% level is approached. Both Oklahoma and Texas Panhandle GCD approaches would deplete alluvial base flow at approximately 10% development. Results suggest periodic review of permits could protect aquifer storage and river base flow. Modeling total aquifer storage is more sensitive to recharge rate and aquifer hydraulic conductivity than to specific yield, while river leakage is most sensitive to aquifer hydraulic conductivity followed by specific yield.  相似文献   

9.
成都市径流污染的概念性模型   总被引:7,自引:0,他引:7  
施为光 《四川环境》1994,13(2):65-70
概念性模型是根据城市径流形成过程及对水体影响变化的物理机理建立的一套数学模型,模型及参数均有明确的物理意义。本文用概念性模型求出了成都市街道地表物的累积量,降雨径流污染负荷量,并模拟了污染物对受纳水体的影响。  相似文献   

10.
Abstract: Dry weather runoff in arid, urban watersheds may consist entirely of treated wastewater effluent and/or urban nonpoint source runoff, which can be a source of bacteria, nutrients, and metals to receiving waters. Most studies of urban runoff focus on stormwater, and few have evaluated the relative contribution and sources of dry weather pollutant loading for a range of constituents across multiple watersheds. This study assessed dry weather loading of nutrients, metals, and bacteria in six urban watersheds in the Los Angeles region of southern California to estimate relative sources of each constituent class and the proportion of total annual load that can be attributed to dry weather discharge. In each watershed, flow and water quality were sampled from storm drain and treated wastewater inputs, as well as from in‐stream locations during at least two time periods. Data were used to calculate mean concentrations and loads for various sources. Dry weather loads were compared with modeled wet weather loads under a range of annual rainfall volumes to estimate the relative contribution of dry weather load. Mean storm drain flows were comparable between all watersheds, and in all cases, approximately 20% of the flowing storm drains accounted for 80% of the daily volume. Wastewater reclamation plants (WRP) were the main source of nutrients, storm drains accounted for almost all the bacteria, and metals sources varied by constituent. In‐stream concentrations reflected major sources, for example nutrient concentrations were highest downstream of WRP discharges, while in‐stream metals concentrations were highest downstream of the storm drains with high metals loads. Comparison of wet vs. dry weather loading indicates that dry weather loading can be a significant source of metals, ranging from less than 20% during wet years to greater than 50% during dry years.  相似文献   

11.
ABSTRACT: The Grand and Saugeen Rivers in southern Ontario were chosen for study as pilot watersheds under the Pollution From Land Use Activities Reference Group (PLUARG) study. The pilot watersheds have adjacent headwater areas and are physically similar in geology, physiography, and climate. Significant differences in water quality between the watersheds at their outlets are attributed to land use and population differences. The major pollutant sources in the two pilot watersheds were identified as trace elements from urban runoff and point source discharges; phosphorus from agricultural and urban runoff and private waste disposal; chloride from transportation corridors; and sediment and nitrogen from agricultural runoff. Yields at the watershed outlets were similar for suspended sediment and two to three times as high in the Grand River for phosphours, nitrogen, chloride, and lead. The higher phosphorus and nitrogen levels were attributed to larger point source inputs and the higher proportion of agricultural activity, comprising 75 percent of the Grand River basin compared to 64 percent in the Saugeen River basin. Similarly, the higher chloride and lead levels were attributed to an order of magnitude larger population and three times as much urban land in the Grand River basin compared to the Saugeen River basin.  相似文献   

12.
The collection, storage, and reuse of rainwater collected in rain barrels from urban rooftop areas assists municipalities in achieving stormwater management objectives and in some areas also serves as an adjunct resource for domestic water supplies. In this study, rainwater reuse and levels of select microbial indicators were monitored for six residential rain barrels located in the Shepherd Creek watershed of Cincinnati, Ohio. Water from rain barrels typically had poor microbial quality and was used for watering indoor and outdoor plants. Rain barrel water chemistry was slightly acidic, exhibited wide ranges in conductivity, turbidity, and total organic carbon (TOC) concentrations and gave no evidence of the presence of cyanobacterial microcystin toxins. Selected microbial water‐quality indicators indicated that counts of total coliform and enterococci were consistently above U.S. Environmental Protection Agency standards for secondary recreational contact water‐quality standards. Residential rain barrels can provide water appropriate for low‐contact reuses (such as plant watering), although there may be transient periods of high levels of indicator bacteria in the collected water.  相似文献   

13.
14.
选择上海城市化地区的绿地、水体、道路、工地及空中5个类型的环境区域,定期收集大气干湿沉降。测定其大气沉降通量及CODCr、TN、TP的沉降量,并计算分析了其对城市景观水体水质的影响。研究结果表明:在仅受大气干湿沉降影响的条件下,水质处于地表水V类中值、水深为0.5m、1.0m、1.5m和2.0m的城市景观水体,经过28d、54d、83d和214d即可转变为劣V类水体。通过实例分析,提出了应对大气干湿沉降影响的水质保持措施。研究成果为城市景观水体的水质保育提供了评价依据与借鉴。  相似文献   

15.
Schiff, Kenneth C. and Liesl L. Tiefenthaler, 2011. Seasonal Flushing of Pollutant Concentrations and Loads in Urban Stormwater. Journal of the American Water Resources Association (JAWRA) 47(1):136‐142. DOI: 10.1111/j.1752‐1688.2010.00497.x Abstract: Despite broad observations of first flush within storms, the scientific understanding of seasonal flushing remains incomplete. Seasonal flushing occurs when initial storms of the season have greater concentrations or loads than storms later in the season. The goal of this study was to census stormwater concentrations and loads from an arid, urban watershed to quantify seasonal flushing. Samples were collected every 15 min during the 1997‐1998 wet season from the Santa Ana River and analyzed for total suspended solids. Initial storms of the season generated event mean concentrations 3‐10 times the event mean concentration of storms later in the season. Cumulative flow‐weighted mean concentrations were calculated as the season progressed. Early season storms discharged only 6% of the annual volume, but influenced flow‐weighted mean concentrations well past the midpoint of the wet season. Mass‐based estimates also indicated a disproportionate load in the early portion of the year; over 52% of the annual load was discharged in the first 30% of the annual volume from the highly urbanized lower watershed. Other stormwater pollutants, including six trace metals (Cd, Cr, Cu, Pb, Ni, Zn), were highly correlated with total suspended solids and also exhibited a significant seasonal flush.  相似文献   

16.
Abstract: Pollutant loading from storm runoff is considered to be an important component of nonpoint source pollution in urban areas. In developing countries, because of the accelerated urbanization and motorization, storm runoff pollution has become a challenge for improving aquatic environmental quality. An effective storm runoff management plan needs to be developed, and questions concerning how much and which proportion of a storm should be treated need to be answered. In this study, a model is developed to determine the fraction of storm runoff that needs to be treated to meet the discharge standard within a given probability. The model considers that the pollutants can be mobilized during the early stage of a storm. The model is applied to a field study of polycyclic aromatic hydrocarbons (PAHs) in road runoff in Beijing, China. In this case, the probability that the PAH load will be mobilized with suspended sediments by the earlier portion of the flush is 73%. Given the high PAH loading in the study area and the referenced discharge standard, the probability that the entire runoff should be captured and treated is 94%. Thus, urban planners need to consider treatment systems for the majority of the storms in this area, whether the PAH load is in the first flush or not. This methodology can be applied to other regions where PAH loads may result in different management outcomes.  相似文献   

17.
针对塔里木河中游输水堤防修建与生态保育的问题,结合对沙子河和阿其河两个断面地下水质的监测资料的分析,对输水堤防修建后堤防外地下水质的时空变化进行了探讨,揭示了在输水堤防影响下堤防外地下水质变化的初步规律.结果表明:沙子河断面和阿其河断面洪枯期地下水矿化度的变化规律由于堤防的修建而被改变,同样在堤防外侧,由于无地表水经过,沙子河断面地下水矿化度远高于在有生态闸定期放水的阿其河断面,因此,生态闸建设对抑制由于输水堤防影响而导致的水质修建具有积极作用.  相似文献   

18.
The impact of urbanization on groundwater is not simple to understand, as it depends on a variety of factors such as climate, hydrogeology, water management practices, and infrastructure. In semiarid landscapes, the urbanization processes can involve high water consumptions and irrigation increases, which in turn may contribute to groundwater recharge. We assessed the hydrological impacts of urbanization and irrigation rates in an Andean peri‐urban catchment located in Chile, in a semiarid climate. For this purpose, we built and validated a coupled surface–groundwater model that allows the verification of a strong stream–aquifer interaction in areas with shallow groundwater, higher than some sewers and portions of the stream. Moreover, we also identified a significant local recharge associated with pipe leaks and inefficient urban irrigation. From the evaluation of different future scenarios, we found a sustainable water conservation scenario will decrease the current groundwater levels, while the median flow reduces from 408 to 389 L/s, and the low flow (Q95%) from 43 to 22L/s. Overall, our results show the relevance of integrating the modeling of surface and subsurface water resources at different spatial and temporal scales, when assessing the effect of urban development and the suitability of urban water practices.  相似文献   

19.
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001‐2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.  相似文献   

20.
利用生物预处理工艺提高城市供水水质,大力发展城市分质供水,实现城市直饮水,是我国新世纪城市化进程及环保产业发展的趋势。本文论述了生物预处理的意义、工艺、效果、影响及其在城市供水中的意义。介绍了分质供水在国内外的发展,探讨了生物预处理与分质供水在城市中的应用及发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号