首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a climate of limited resources, it is often necessary to prioritize restoration efforts geographically. The synoptic approach is an ecologically based tool for geographic prioritization of wetland protection and restoration efforts. The approach was specifically designed to incorporate best professional judgment in cases where information and resources are otherwise limited. Synoptic assessments calculate indices for functional criteria in subunits (watersheds, counties, etc.) of a region and then rank the subunits. Ranks can be visualized in region-scale maps which enable managers to identify areas where efforts optimize functional performance on a regional scale. In this paper, we develop a conceptual model for prioritizing watersheds whose wetlands can be restored to reduce total sediment yield at the watershed outlet. The conceptual model is designed to rank watersheds but not individual wetlands within a watershed. The synoptic approach is valid for applying the sediment yield reduction model because there is high demand for prioritizing disturbed wetlands for restoration, but there is limited, quantitative, accurate information available with which to make decisions. Furthermore, the cost of creating a comprehensive database is prohibitively high. Finally, because the model will be used for planning purposes, and, specifically, for prioritizing based on multiple decisions rather than optimizing a single decision, the consequence of prioritization errors is low. Model results cannot be treated as scientific findings. The conclusions of an assessment are based on judgement, but this judgement is guided by scientific principles and a general understanding of relevant ecological processes. The conceptual model was developed as the first step towards prioritizing of wetland restoration for sediment yield reduction in US EPA Region 4.  相似文献   

2.
ABSTRACT: Many urban and suburban communities in the Midwest are seeking to establish sustainable, morphologically and hydraulically varied, yet dynamically stable fluvial systems that are capable of supporting healthy, biologically diverse aquatic ecosystems — a process known as stream naturalization. This paper describes an integrated research program that seeks to develop a scientific and technological framework to support two stream naturalization projects near Chicago, Illinois. The research program integrates theory and methods in fluvial geomorphology, aquatic ecology, hydraulic engineering and social theory. Both the conceptual and the practical challenges of that integration are discussed. Scientific and technical support emphasize the development of predictive tools to evaluate the performance of possible naturalization designs at scales most appropriate to community based projects. Social analysis focuses on place based evaluations of how communities formulate an environmental vision and then, through decision making, translate this vision into specific stream naturalization strategies. Integration of scientific and technical with social components occurs in the context of community based decision making as the predictive tools are employed by project scientists to help local communities translate their environmental visions into concrete environmental designs. Social analysis of this decision making process reveals how the interplay between the community's vision of what they want the watershed to become, and the scientific perspective on what the watershed can become to achieve the community's environmental goals, leads to the implementation of specific stream naturalization practices.  相似文献   

3.
Worldwide there is a declining trend in natural fish catch (FAO, The state of world fisheries and aquaculture. , 2002) and Bangladesh is no exception. The vast inland fisheries of Bangladesh have been declining over the years, largely a result of human alteration of the aquatic habitats arising from human interventions in the floodplain systems such as the establishment of water control structures which favor agricultural production but reduce fish habitats. It can be assumed that conventional management measures are not adequate to conserve natural fisheries and exploring alternative knowledge systems to complement existing management is warranted. This paper focuses on local ecological knowledge and several other local practices held by fishers engaging directly with floodplain ecosystems. These knowledge systems and practices may be valuable tools for understanding ecosystems processes and related changes and developing local level responses to avert negative consequences of such changes. This may help in devising alternatives to ecosystem management and the conservation of floodplain fish habitats of Bangladesh and elsewhere in the world. This study was conducted in a natural depression (locally called beel) and its surrounding floodplain system located in north central Bangladesh which has become highly degraded. The results of the study indicate that the fishers and local users of the floodplain ecosystems are rich in local ecological knowledge concerning the hydrology of the floodplains and small lakes, the habitat preferences of fish, the role of agricultural crops on fish habitats, and the impact of habitat human interventions in aquatic ecosystems. Given the apparent inadequacy of the present management regime, this article argues for an inclusion of local knowledge and practices into habitat management as a more holistic approach to floodplain habitat restoration and conservation that encourages multi-level cooperation and which builds on diversified knowledge systems.  相似文献   

4.
The wetland ecosystems occurring within alluvial floodplains change rapidly. Within the ecological successions, the life span of pioneer and transient stages may be measured in several years or decades depending on the respective influences of allogenic (water dynamics, erosion, and deposition) and autogenic developmental processes (population dynamics, eutrophication, and terrestrialization). This article emphasizes the mechanisms that are responsible for the ecosystem changes and their importance to environmental management. Two case studies exemplify reversible and irreversible successional processes in reference to different spatial and temporal scales. On the scale of the former channels, the standing-water ecosystems with low homeostasis may recover their previous status after human action on the allogenic processes. On the scale of a whole reach of the floodplain, erosion and deposition appear as reversible processes that regenerate the ecological successions. The concepts of stability and reversibility are discussed in relation to different spatiotemporal referential frameworks and different levels of integration. The reversible process concept is also considered with reference to the energy inputs into the involved subsystems. To estimate the probability of ecosystem regeneration or the cost of restoration, a concept of degrees of reversibility is proposed.  相似文献   

5.
The restoration of river environments has been of growing importance to river management and planning in the UK. The extension of ecological restoration to floodplains as well as river channels is more complex, partly because of the range of stakeholders and the diversity of relevant management institutions. This paper draws on a qualitative survey of river managers in the UK to identify institutional factors relevant to the success or failure of floodplain restoration projects.  相似文献   

6.
Non-native shrub species in the genus Tamarix (saltcedar, tamarisk) have colonized hundreds of thousands of hectares of floodplains, reservoir margins, and other wetlands in western North America. Many resource managers seek to reduce saltcedar abundance and control its spread to increase the flow of water in streams that might otherwise be lost to evapotranspiration, to restore native riparian (streamside) vegetation, and to improve wildlife habitat. However, increased water yield might not always occur and has been substantially lower than expected in water salvage experiments, the potential for successful revegetation is variable, and not all wildlife taxa clearly prefer native plant habitats over saltcedar. As a result, there is considerable debate surrounding saltcedar control efforts. We review the literature on saltcedar control, water use, wildlife use, and riparian restoration to provide resource managers, researchers, and policy-makers with a balanced summary of the state of the science. To best ensure that the desired outcomes of removal programs are met, scientists and resource managers should use existing information and methodologies to carefully select and prioritize sites for removal, apply the most appropriate and cost-effective control methods, and then rigorously monitor control efficacy, revegetation success, water yield changes, and wildlife use.  相似文献   

7.
Pre-restoration studies typically focus on physical habitat, rather than the food-base that supports aquatic species. However, both food and habitat are necessary to support the species that habitat restoration is frequently aimed at recovering. Here we evaluate if and how the productivity of the food-base that supports fish production is impaired in a dredge-mined floodplain within the Yankee Fork Salmon River (YFSR), Idaho (USA); a site where past restoration has occurred and where more has been proposed to help recover anadromous salmonids. Utilizing an ecosystem approach, we found that the dredged segment had comparable terrestrial leaf and invertebrate inputs, aquatic primary producer biomass, and production of aquatic invertebrates relative to five reference floodplains. Thus, the food-base in the dredged segment did not necessarily appear impaired. On the other hand, we observed that off-channel aquatic habitats were frequently important to productivity in reference floodplains, and the connection of these habitats in the dredged segment via previous restoration increased invertebrate productivity by 58%. However, using a simple bioenergetic model, we estimated that the invertebrate food-base was at least 4× larger than present demand for food by fish in dredged and reference segments. In the context of salmon recovery efforts, this observation questions whether additional food-base productivity provided by further habitat restoration would be warranted in the YFSR. Together, our findings highlight the importance of studies that assess the aquatic food-base, and emphasize the need for more robust ecosystem models that evaluate factors potentially limiting fish populations that are the target of restoration.  相似文献   

8.
Riverine wetlands, which provide numerous valuable functions, are disappearing in floodplains of a channelized European river. A restoration project has been proposed by scientists to restore a former braided channel of the Rhône River by the removal of fine organic sediments in order to enhance groundwater supply. A precise and intensive prerestoration monitoring program during one year (including comparison with a reference channel) has taken into account several variables and ecological performance indicators measured at various spatial and temporal scales. Three restoration techniques were then suggested, taking into account two characteristics of ecosystem functions for increasing restoration success and self-sustainability: (1) the riparian forest as well as the shores must be preserved or disturbed as little as possible; and (2) the upstream alluvial plug must be preserved to prevent direct supply of nutrientrich water from the Rhône River. Among the three restoration options proposed, it was not possible to carry out the less ecologically disturbing one as it was considered too expensive, time consuming, and difficult to realize. A precise and intensive postrestoration monitoring program, conducted over two years, demonstrated restoration success but also unpredicted problems, such as a locally thick layer of fine organic sediment. As long as a self-sustainable state is not achieved, this monitoring should be continued. Afterwards, a less precise and less intensive long-term monitoring should enable the detection of future events that may influence ecosystem changes.  相似文献   

9.
Given the unique biogeochemical, physical, and hydrologic services provided by floodplain wetlands, proper management of river systems should include an understanding of how floodplain modifications influence wetland ecosystems. The construction of levees can reduce river–floodplain connectivity, yet it is unclear how levees affect wetlands within floodplains, let alone the cumulative impacts within an entire watershed. This paper explores spatial relationships between levee and floodplain wetland systems in the Wabash Basin, United States. We used a hydrogeomorphic floodplain delineation technique to map floodplain extents and identify wetlands that may be hydrologically connected to river networks. We then spatially examined the relationship between levee presence, wetland area, and other river network attributes within discrete subbasins. Our results show that cumulative wetland area is relatively constant in subbasins that contain levees, regardless of maximum stream order within the subbasin. In subbasins that do not contain levees, cumulative wetland area increases with maximum stream order. However, we found that wetland distributions around levees can be complex, and further studies on the influence of levees on wetland habitat may need to consider finer resolution spatial scales.  相似文献   

10.
Densmore, Roseann V. and Kenneth F. Karle, 2009. Flood Effects on an Alaskan Stream Restoration Project: The Value of Long‐Term Monitoring. Journal of the American Water Resources Association (JAWRA) 45(6):1424‐1433. Abstract: On a nationwide basis, few stream restoration projects have long‐term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long‐term and event‐based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long‐term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross‐sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25‐year flood on the stream and floodplain geometry and riparian vegetation. The long‐term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.  相似文献   

11.
Lack of theoretical basis for predicting rate and pathways of recovery   总被引:1,自引:0,他引:1  
An inadequate basis for precisely predicting the outcome of lotic ecosystem recovery, whether due to unaided natural processes or management techniques or both, exists because: (1) the field of ecology has not yet matured as a rigorous predictive science; (2) the precise sequence of events, including climatic occurrences, affecting the recovery process may be unique events and thus rarely or never repeated; and (3) even when attempts are made to control the recolonization process through introduction of species, etc., the interaction of these species may not follow deterministic models. Although this symposium focuses on lotic ecosystems, such systems are influenced strongly by exports from the surrounding land mass and, under certain circumstances, this may be the overriding influence on the recovery process; therefore, unless the boundary conditions are determined realistically, the recovery process may not follow desirable pathways. Despite the lack of a robust theoretical support base for lotic ecosystem recovery, some remarkable and rapid recoveries have occurred to either a close approximation of the original condition or to a condition ecologically superior to the damaged condition. In some cases, the recovery was due entirely to natural processes and, in others, often followed relatively straightforward management practices. There is evidence indicating that lotic ecosystem restoration is both cost effective and likely to produce satisfying results relatively rapidly. It is both fortunate that this is the case, since society is likely to support such efforts when the results have been extraordinarily successful, and unfortunate since restoration ecology needs a predictive capability.  相似文献   

12.
Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China’s ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded.  相似文献   

13.
Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient‐enriched floodplain soils could pose a long‐term source of sediment and nutrients to downstream rivers.  相似文献   

14.
ABSTRACT: The accurate and reliable determination of floodplains, floodway boundaries, and flood water elevations are integral requirements of Flood Insurance Studies. These studies are intended to be used for determining the flood insurance rates. Therefore, the accuracy of the water surface profiles are important. To ensure the high degree of accuracy, the HUD Flood Insurance Administration has developed standards which must be met in the analysis of water surface profiles. A somewhat less accurate study is required for the preparation of Flood Emergency Plans. As part of the flood insurance studies of eight locations in the State of North Dakota, various flood hazard and floodplain information reports were reviewed. The hydrologic and hydraulic analyses, especially the computation of the 100-year water surface profiles, were completed using both simplified and complex hydraulic computation methods. Significant differences were found (1 to 3 feet) between the profiles computed by the SCS simplified method and those computed by HEC-2 computer program. However, the floodplain boundaries determined by both methods were found to be similar. Approximate methods are recommended for rapid determination of the floodplain, floodway boundaries, and inundation area mapping, while sophisticated computer programs (HEC-2) are recommended to be used for developing areas where the 100-year flood elevation has a significant impact on the cost of land development.  相似文献   

15.
Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River.  相似文献   

16.
17.
Riparian ecosystems are designated for special protection from development and disturbance at Lake Tahoe. The Tahoe Regional Planning Agency (TRPA) required protection of Stream Environment Zones (SEZs) in its Regional Plan for the Lake Tahoe Basin in 1987. These zones are identified by the presence of key indicators such as the evidence of surface water flow, riparian vegetation, near‐surface ground water, designated floodplain, and alluvial soils. They are mapped on each potential building site and assigned a setback that is also off limits to building construction. The SEZs are protected to maintain their functions and values, including flood attenuation, water quality enhancement, and wildlife habitat. Strict regulations control use or disturbance of SEZs on public and private property throughout the watershed. The TRPA has set restoration targets to increase the acreage of naturally functioning SEZs in the Tahoe Basin. Many SEZ restoration projects have been designed and implemented, but SEZ restoration targets have not been met. More SEZ restoration projects are being designed and funded each year. Restoration designers would benefit from increased effectiveness monitoring of completed projects and Web‐based dissemination of monitoring results.  相似文献   

18.
Floodplain forests are flood-dependent ecosystems. They rely on well-timed, periodic floods for the provision of regeneration sites and on tapered flood recession curves for the successful establishment of seedlings. These overbank flood events are described as regeneration flows. Once floodplain forest trees are established, in order to grow they also require adequate, although variable, river stage levels or maintenance flows throughout the year. Regeneration flows are often synonymous with flood flows and only occur periodically. There is a disparity between this need for varied interannual flows over the decadal time frame and the usual annual cycle of flow management currently used by most river management agencies. Maintenance flows are often closer to established minimum flows and much easier to provide by current operational practices.A number of environmental flow methodologies, developed in North America, Australia, and South Africa are described in this review. They include the needs of the floodplain environment in the management and allocation of river flows. In North America, these methodologies have been put into practice in a number of river basins specifically to restore floodplain forest ecosystems. In Australia and South Africa, a series of related holistic approaches have been developed that include the needs of floodplain ecosystems as well as in-channel ecosystems. In most European countries, restoration of floodplain forests takes place at a few localized restoration sites, more often as part of a flood-defense scheme and usually not coordinated with flow allocation decisions throughout the river basin. The potential to apply existing environmental flow methodologies to the management of European floodplain forests is discussed.  相似文献   

19.
Lake Karla, Greece, was almost completely drained in 1962 both to protect surrounding farmlands from flooding and to increase agricultural area. Loss of wetland functions and values resulted in environmental, social, and economic problems. A number of restoration plans were proposed to address these problems. The plan approved by the government in the early 1990s proposed construction of a 4200-ha reservoir solely to improve water storage and flood attenuation functions. However, the Ramsar Scientific and Technical Review Panel states that the primary goal of any restoration project is to create resilient and sustainable ecosystems, as measured on a human timescale, in order to improve the ecological character and enhance the socioeconomic role that the wetland plays in the watershed. This study utilizes Ramsar guidelines for sustainable restoration of Lake Karla. Eight additional restoration measures are proposed based on functional analysis of the wetland to enhance additional wetland functions and support multiple values for humans and nature.  相似文献   

20.
The purpose of this short article is to set static and dynamic models for optimal floodplain management and to compare policy implications from the models. River floodplains are important multiple resources in that they provide various ecosystem services. It is fundamentally significant to consider environmental externalities that accrue from ecosystem services of natural floodplains. There is an interesting gap between static and dynamic models about policy implications for floodplain management, although they are based on the same assumptions. Essentially, we can derive the same optimal conditions, which imply that the marginal benefits must equal the sum of the marginal costs and the social external costs related to ecosystem services. Thus, we have to internalise the external costs by market-based policies. In this respect, market-based policies seem to be effective in a static model. However, they are not sufficient in the context of a dynamic model because the optimal steady state turns out to be unstable. Based on a dynamic model, we need more coercive regulation policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号