首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract: Identifying relationships between landscape hydrogeological setting, riparian hydrological functioning and riparian zone sensitivity to climate and water quality changes is critical in order to best use riparian zones as best management practices in the future. In this study, we investigate water table dynamics, water flow path and the relative importance of precipitation, deep ground water (DG) and seep water as sources of water to a riparian zone in a deeply incised glacial till valley of the Midwest. Data indicate that water table fluctuations are strongly influenced by soil texture and to a lesser extent by upland sediment stratigraphy producing seeps near the slope bottom. The occurrence of till in the upland and at 1.7‐2 m in the riparian zone contributes to maintaining flow parallel to the ground surface at this site. Lateral ground‐water fluxes at this site with a steep topography in the upland (16%) and loam soil near the slope bottom are small (<10 l/d/m stream length) and intermittent. A shift in flow path from a lateral direction to a down valley direction is observed in the summer despite the steep concave topography and the occurrence of seeps at the slope bottom. Principal component and discriminant analysis indicate that riparian water is most similar to seep water throughout the year and that DG originating from imbedded sand and gravel layers in the lower till unit is not a major source of water to riparian zones in this setting. Water quality data and the dependence of the riparian zone for recharge on seep water suggest that sites in this setting may be highly sensitive to changes in precipitation and water quality in the upland in the future. A conceptual framework describing the hydrological functioning of riparian zones on this setting is presented to generalize the finding of this study.  相似文献   

2.
This paper presents key challenges in modeling water quality processes of riparian ecosystems: How can the spatial and temporal extent of water and solute mixing in the riparian zone be modeled? What level of model complexity is justified? How can processes at the riparian scale be quantified? How can the impact of riparian ecosystems be determined at the watershed scale? Flexible models need to be introduced that can simulate varying levels of hillslope‐riparian mixing dictated by topography, upland and riparian depths, and moisture conditions. Model simulations need to account for storm event peak flow conditions when upland solute loadings may either bypass or overwhelm the riparian zone. Model complexity should be dictated by the level of detail in measured data. Model algorithms need to be developed using new macro‐scale and meso‐scale experiments that capture process dynamics at the hillslope or landscape scales. Monte Carlo simulations should be an integral part of model simulations and rigorous tests that go beyond simple time series, and point‐output comparisons need to be introduced. The impact of riparian zones on watershed‐scale water quality can be assessed by performing simulations for representative hillsloperiparian scenarios.  相似文献   

3.
Water quality is a key concern in the current global environment, with the need to promote practices that help to protect water quality, such as riparian zone management, being paramount. The present study used the theory of planned behaviour as a framework for understanding how beliefs influence decisions about riparian zone management. Respondents completed a survey that assessed their behavioural, normative, and control beliefs in relation to intentions to manage riparian zones on their property. The results of the study showed that, overall, landholders with strong intentions to manage their riparian zones differed significantly in terms of their beliefs compared to landholders who had weak intentions to manage their riparian zones. Strong intentions to manage riparian zones were associated with a favourable cost-benefit analysis, greater perceptions of normative support for the practice and lower perceptions of the extent to which barriers would impede management of riparian zones. It was also evident that willingness to comply with the recommendations of salient referents, beliefs about the benefits of riparian zone management and perceptions of the extent to which barriers would impede riparian zone management were most important for determining intentions to manage riparian zones. Implications for policy and extension practice are discussed.  相似文献   

4.
ABSTRACT: Riparian zones perform a variety of biophysical functions that can be managed to reduce the effects of land use on instream habitat and water quality. However, the functions and human uses of riparian zones vary with biophysical factors such as landform, vegetation, and position along the stream continuum. These variations mean that “one size fits all” approaches to riparian management can be ineffective for reducing land use impacts. Thus riparian management planning at the watershed scale requires a framework that can consider spatial differences in riparian functions and human uses We describe a pilot riparian zone classification developed to provide such a framework for riparian management in two diverse river systems in the Waikato region of New Zealand. Ten classes of riparian zones were identified that differed sufficiently in their biophysical features to require different management. Generic “first steps” and “best practical” riparian management recommendations and associated costs were developed for each riparian class. The classification aims to not only improve our understanding of the effectiveness of riparian zone management as a watershed management tool among water managers and land owners, but to also provide a basis for deciding on management actions.  相似文献   

5.
ABSTRACT: Inherent site factors can generate substantial variation in the ground water nitrate removal capacity of riparian zones. This paper examines research in the glaciated Northeast to relate variability in ground water nitrate removal to site attributes depicted in readily available spatial databases, such as SSUIRGO. Linking site‐specific studies of riparian ground water nitrate removal to spatial data can help target high‐value riparian locations for restoration or protection and improve the modeling of watershed nitrogen flux. Site attributes, such as hydric soil status (soil wetness) and geomorphology, affect the interaction of nitrate‐enriched ground water with portions of the soil ecosystem possessing elevated biogeochemical transformation rates (i.e., biologically active zones). At our riparian sites, high ground water nitrate‐N removal rates were restricted to hydric soils. Geomorphology provided insights into ground water flowpaths. Riparian sites located on outwash and organic/alluvial deposits have high potential for nitrate‐enriched ground water to interact with biologically active zones. In till deposits, ground water nitrate removal capacity may be limited by the high occurrence of surface seeps that markedly reduce the time available for biological transformations to occur within the riparian zone. To fully realize the value of riparian zones for nitrate retention, landscape controls of riparian nitrate removal in different climatic and physiographic regions must be determined and translated into available spatial databases.  相似文献   

6.
ABSTRACT: This study evaluates a conceptual model developed for riparian zones in Ontario, Canada, that links landscape hydrogeological characteristics to riparian ground water hydrology and nitrate removal efficiency. Data from a range of riparian sites in the United States and Europe suggest that the riparian zone types identified in the model are consistent with patterns of riparian hydrology and nitrate flux and removal in many humid temperate landscapes. These data also support the view that a riparian width of less than 20 m is often sufficient for effective nitrate removal unless riparian sediments are coarse grained or nitrate transport occurs mainly in surface‐fed ground water seeps. This study assesses the possibility of using topographic, soil, surficial geology, and vegetation maps to determine landscape attributes linked by the model to riparian zone hydrological functioning and nitrate removal efficiency. Although mappable data can help in determining broad classes of riparian zones, field visits are necessary to determine non‐mappable riparian attributes such as seeps, organic horizons, and permeable sediment depth in the riparian zone. This research suggests that the conceptual model could be used for landscape management purposes in most temperate landscapes with minor modifications and that the hydrological component of the model could be adapted for contaminants other than nitrate.  相似文献   

7.
Spray irrigation of forested land can provide an effective system for nutrient removal and treatment of municipal wastewater. Evolution of N2 + N2O from denitrifying activity is an important renovation pathway for N applied to forested land treatment systems. Federal and state guidance documents for design of forested land treatment systems indicate the expected range for denitrification to be up to 25% of applied N, and most forest land treatment systems are designed using values from 15 to 20% of applied N. However, few measurements of denitrification following long-term wastewater applications at forested land treatment sites exist. In this study, soil N2 + N2O-N evolution was directly measured at four different landscape positions (hilltop, midslope, toe-slope, and riparian zone) in a forested land treatment facility in the Georgia Piedmont that has been operating for more than 13 yr. Denitrification rates within effluent-irrigated areas were significantly greater than rates in adjacent nonirrigated buffer zones. Rates of N2 + N2O-N evolved from soil in irrigated forests ranged from 5 to 10 kg ha(-1) yr(-1) N on the three upland landscape positions and averaged 38 kg ha(-1) yr(-1) N within the riparian zone. The relationship between measured riparian zone denitrification rates and soil physical and chemical properties was poor. The best relationship was with soil temperature, with an r2 of 0.18. Overall, on a landscape position weighted basis, only 2.4% of the wastewater-applied N was lost through denitrification.  相似文献   

8.
温泉生态旅游是未来温泉旅游的发展方向。温泉生态旅游非常适合在温泉资源丰富而生态环境较脆弱的喀斯特地区开展。基于对贵州省息烽温泉资源开发利用现状的调查,对息烽温泉生态旅游的发展思路、开发模式和运行机制进行了初步研究,希望能为该区域发展温泉生态旅游提供决策参考。  相似文献   

9.
Ecologists are beginning to recognize the effect of heterogeneity on structure and function in arid and semiarid ecosystems. Additionally, the influences of temperature on ecosystems are widely documented, but landscape temperature patterns and relationships with vegetation are rarely reported in ecological studies. To better understand the importance of temperature patterns to the conservation and restoration of native ecosystems, we designed an experiment to investigate relationships among soil surface temperature, landscape heterogeneity, and grazing intensity. Grazing intensity did influence the vegetation structure and composition. Heavy treatments had the greatest bare ground and the least vertical structure. Ungrazed treatments had the most litter and live grass cover. However, average temperatures among the three grazing treatments were not different and ranged less than 2°C during midday summer periods. The temperature difference between riparian and upland landscapes within grazing treatments was 21°C. Landscape position (riparian vs. upland) did have a significant influence on soil surface temperature and produced a variation in temperature 11 times greater than grazing intensities. Thermal heterogeneity did not differ among grazing treatments. Lower soil surface temperatures (associated with riparian areas) may provide a critical thermal refuge for many animals in arid and semiarid ecosystems on hot summer days, when air temperatures can exceed 37°C. Riparian zones, specifically riparian vegetation, are an important component in ecosystem management.  相似文献   

10.
Biogeochemical processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. However, little research has been reported on the microbial process and degradation potential of herbicide in a riparian soil. Field sampling and incubation experiments were conducted to investigate differences in microbial parameters and butachlor degradation in the riparian soil from four plant communities in Chongming Island, China. The results suggested that the rhizosphere soil had significantly higher total organic C and water-soluble organic C relative to the nonrhizosphere soil. Differences in rhizosphere microbial community size and physiological parameters among vegetation types were significant. The rhizosphere soil from the mixed community of Phragmites australis and Acorus calamus had the highest microbial biomass and biochemical activity, followed by A. calamus, P. australis and Zizania aquatica. Microbial ATP, dehydrogenase activity (DHA), and basal soil respiration (BSR) in the rhizosphere of the mixed community of P. australis and A. calamus were 58, 72, and 62% higher, respectively, than in the pure P. australis community. Compared with the rhizosphere soil of the pure plant communities, the mixed community of P. australis and A. calamus displayed a significantly greater degradation rate of butachlor in the rhizosphere soil. Residual butachlor concentrations in rhizosphere soil of the mixed community of P. australis and A. calamus and were 48, 63, and 68% lower than three pure plant communities, respectively. Butachlor degradation rates were positively correlated to microbial ATP, DHA, and BSR, indicating that these microbial parameters may be useful in assessing butachlor degradation potential in the riparian soil.  相似文献   

11.
Riparian buffer zones have been incorporated in land and water management policy for England since 1994, when the Ministry of Agriculture, Fisheries and Food introduced a Water Fringe Option (WFO) as part of a broader habitat conservation scheme. Whilst natural scientists have examined the functioning of riparian buffer zones, understanding of farmers' decision making regarding the adoption or non-adoption of voluntary buffer zone policies is very limited. This paper examines the factors influencing the decision making of farmers who were eligible to join the WFO in three river catchments. Quantitative and qualitative information was collected from farmers using semi-structured interviews and was supplemented with in-depth interviews with representatives of public agencies, agricultural groups and independent experts. Data analysis was completed using the 'Framework' analytical approach and the Statistical Package for the Social Sciences 8.0 computer software. The research revealed that decisions to participate in the WFO were influenced by a mix of situational, psychological and sociological characteristics, which suggests that policy makers must attach greater importance to implementation conditions and farmers decision making if riparian buffer zones are to play a more prominent role in the management of land and water in rural catchments. Tightly structured schemes will only appeal to a narrow segment of the farming population and will not lead to widespread re-creation of riparian habitats. A more flexible and collaborative style of policy development is needed in order for riparian buffer zone policies to meet the circumstances and needs of the diverse UK farming community.  相似文献   

12.
Little is known about the impact of agricultural legacy on subsurface biogeochemical processes in the years following restoration of riparian wetlands (WLs). More knowledge is also needed on the relative importance of seasons, precipitation events, and inputs of water and nutrients driving nitrogen (N), phosphorus (P), sulfur (S), and greenhouse gas (GHG) (N2O, CO2, CH4) dynamics in these systems. This investigation of a riparian zone comprising a restored WL area and a nonrestored well‐drained alluvium (AL) area in the United States Midwest revealed that despite successful hydrological restoration a decade earlier, biogeochemical conditions in the WL area remained less anoxic than in natural WLs, and not significantly different from those in the AL area. No significant differences in N, P, S, and C compound concentrations or fluxes were observed between the AL and WL areas. Over the duration of the study, nitrate (NO3?) and soluble reactive phosphorus appeared to be primarily driven by hillslope contributions. Ammonium (NH4+), sulfate (SO42?), and CO2 responded strongly to seasonal changes in biogeochemical conditions in the riparian zone, while N2O and CH4 fluxes were most influenced by large rewetting events. Overall, our results challenge overly simplistic assumptions derived from direct interpretation of redox thermodynamics, and show complex patterns of solutes and GHGs at the riparian zone scale.  相似文献   

13.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

14.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

15.
海螺沟作为冰川旅游区已于1987年10月正式向国内外开放。温泉对该区来说是非常重要的旅游资源,也是主要能源之一,对它的研究具有重大旅游和经济价值。本文研究了海螺沟温泉的成因、水化学特性、微量成分的浓度和分布及其毒性指标等,并在此基础上对其作出评价。从温泉的产出条件、化学组成、物理性状和未受污染等因素综合分析,认为海螺沟温泉是保持原始本底的受活动构造控制的深成热矿泉水,可浴可饮、可综合利用。  相似文献   

16.
我国温泉旅游资源的开发与利用   总被引:13,自引:0,他引:13  
我国温泉旅游资源丰富,目前已经形成了一批成熟的温泉旅游度假区,但是当前我国对温泉旅游资源的稀缺性和脆弱性认识不足,温泉旅游项目建设存在贵族化、劣势产品"搭便车"趋向、旅游功能单一等问题.提出充分重视温泉旅游资源的价值,根据市场状况合理选择开发模式,对本地洗浴客人和外来公务游客作重点营销,保持温泉旅游产品的价格优势,开发多元化旅游产品.  相似文献   

17.
Hot Spots of Perforated Forest in the Eastern United States   总被引:1,自引:0,他引:1  
National assessments of forest fragmentation satisfy international biodiversity conventions, but they do not identify specific places where ecological impacts are likely. In this article, we identify geographic concentrations (hot spots) of forest located near holes in otherwise intact forest canopies (perforated forest) in the eastern United States, and we describe the proximate causes in terms of the nonforest land-cover types contained in those hot spots. Perforated forest, defined as a 0.09-ha unit of forest that is located at the center of a 7.29-ha neighborhood containing 60–99% forest with relatively low connectivity, was mapped over the eastern United States by using land-cover maps with roads superimposed. Statistically significant (P < 0.001) hot spots of high perforation rate (perforated area per unit area of forest) were then located by using a spatial scan statistic. Hot spots were widely distributed and covered 20.4% of the total area of the 10 ecological provinces examined, but 50.1% of the total hot-spot area was concentrated in only two provinces. In the central part of the study area, more than 90% of the forest edge in hot spots was attributed to anthropogenic land-cover types, whereas in the northern and southern parts it was more often associated with seminatural land cover such as herbaceous wetlands.  相似文献   

18.
ABSTRACT: The relation offish community composition to riparian cover at two spatial scales was compared at 18 streams in the agricultural Minnesota River Basin. The two spatial scales were: (1) local riparian zone (a 200 meter wide buffer extending 2 to 3 kilometers upstream of the sampling reach); and (2) the upstream riparian zone (a 200 m wide buffer on the mainstem and all perennial tributaries upstream of the sampling reach). Analysis of variance indicated that streams with wooded‐local riparian zones had greater fish species richness (means = 20 and 15, respectively) and Index of Biotic Integrity (IBI) scores (means = 40 and 26, respectively) than streams with open‐local riparian zones. Streams with wooded‐upstream riparian zones tended (were not statistically significant) to have greater numbers of species (means = 19 and 15, respectively) and IBI scores (means = 33 and 28, respectively) than streams with open‐upstream riparian zones. There was no significant interaction between the riparian zone conditions at the two scales. This study suggests that maintenance of wooded riparian cover along streams could be effective in maintaining or improving fish community composition in streams draining heavily agricultural areas.  相似文献   

19.
Riparian buffer zones are known to reduce diffuse N pollution of streams by removing and modifying N from agricultural runoff. Denitrification, often identified as the key N removal process, is also considered as a major source of the greenhouse gas nitrous oxide (N2O). The risks of high N2O emissions during nitrate mitigation and the environmental controls of emissions have been examined in relatively few riparian zones and the interactions between controls and emissions are still poorly understood. Our objectives were to assess the rates of N2O emission from riparian buffer zones that receive large loads of nitrate, and to evaluate various factors that are purported to control N emissions. Denitrification, nitrification, and N2O emissions were measured seasonally in grassland and forested buffer zones along first-order streams in The Netherlands. Lateral nitrate loading rates were high, up to 470 g N m(-2) yr(-1). Nitrogen process rates were determined using flux chamber measurements and incubation experiments. Nitrous oxide emissions were found to be significantly higher in the forested (20 kg N ha(-1) yr(-1)) compared with the grassland buffer zone (2-4 kg N ha(-1) yr(-1)), whereas denitrification rates were not significantly different. Higher rates of N2O emissions in the forested buffer zone were associated with higher nitrate concentrations in the ground water. We conclude that N transformation by nitrate-loaded buffer zones results in a significant increase of greenhouse gas emission. Considerable N2O fluxes measured in this study indicate that Intergovernmental Panel on Climate Change methodologies for quantifying indirect N2O emissions have to distinguish between agricultural uplands and riparian buffer zones in landscapes receiving large N inputs.  相似文献   

20.
Watson, Tara K., Dorothy Q. Kellogg, Kelly Addy, Arthur J. Gold, Mark H. Stolt, Sean W. Donohue, and Peter M. Groffman, 2010. Groundwater Denitrification Capacity of Riparian Zones in Suburban and Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 46(2):237-245. DOI: 10.1111/j.1752-1688.2010.00418.x Abstract: We evaluated the relationship of dominant watershed land use to the structure and nitrogen (N) sink function of riparian zones. We focused on groundwater denitrification capacity, water table dynamics, and the presence and pattern of organically enriched deposits. We used the push-pull method (measurement of 15N-enriched denitrification gases derived from an introduced groundwater plume of 15N-enriched nitrate) to evaluate groundwater denitrification capacity on nine forested wetland riparian sites developed in alluvial or outwash parent materials in southern New England. Three replicate sites were located in each of the three watershed types, those with substantial (1) irrigated agriculture, (2) suburban development, and (3) forest. Soil morphology and water table dynamics were assessed at each site. We found significantly lower mean annual water tables at sites within watersheds with substantial irrigated agriculture or suburban development than forested watersheds. Water table dynamics were more variable at sites within suburban watersheds, especially during the summer. Groundwater denitrification capacity was significantly greater at sites within forested watersheds than in watersheds with substantial irrigated agriculture. Because of the high degree of variability observed in riparian sites within suburban watersheds, groundwater denitrification capacity was not significantly different from either forested or agricultural watersheds. The highly variable patterns of organically enriched deposits and water tables at sites within suburban watersheds suggests that depositional events are irregular, limiting the predictability of groundwater N dynamics in these riparian zones. The variability of riparian N removal in watersheds with extensive suburbia or irrigated agriculture argues for N management strategies emphasizing effective N source controls in these settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号