首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kline, Michael and Barry Cahoon, 2010. Protecting River Corridors in Vermont. Journal of the American Water Resources Association (JAWRA) 46(2):227-236. DOI: 10.1111/j.1752-1688.2010.00417.x Abstract: The Vermont Agency of Natural Resources’ current strategy for restoring aquatic habitat, water quality, and riparian ecosystem services is the protection of fluvial geomorphic-based river corridors and associated wetland and floodplain attributes and functions. Vermont has assessed over 1,350 miles of stream channels to determine how natural processes have been modified by channel management activities, corridor encroachments, and land use/land cover changes. Nearly three quarters of Vermont field-assessed reaches are incised limiting access to floodplains and thus reducing important ecosystem services such as flood and erosion hazard mitigation, sediment storage, and nutrient uptake. River corridor planning is conducted with geomorphic data to identify opportunities and constraints to mitigating the effects of physical stressors. Corridors are sized based on the meander belt width and assigned a sensitivity rating based on the likelihood of channel adjustment due to stressors. The approach adopted by Vermont is fundamentally based on restoring fluvial processes associated with dynamic equilibrium, and associated habitat features. Managing toward fluvial equilibrium is taking hold across Vermont through adoption of municipal fluvial erosion hazard zoning and purchase of river corridor easements, or local channel and floodplain management rights. These tools signify a shift away from primarily active management approaches of varying success that largely worked against natural river form and process, to a current community-based, primarily passive approach to accommodate floodplain reestablishment through fluvial processes.  相似文献   

2.
ABSTRACT: An experimental investigation of the random component in stream meandering is described. The results of sixty replicate experiments of meander initiation and development made using the same discharge, bed material and bed slope are described and analyzed. It is demonstrated that the commencement of meandering is a random process. The random component in meander behavior is indicated by the size of the coefficients of variation of meander amplitude and wavelength of 0.45 and 0.22, respectively. A simple model is put forward to explain the observed deterministic and random components of meander behavior.  相似文献   

3.
    
Abstract: The effect of stream restoration on hyporheic functions has been neglected, although channel rehabilitation projects have a potential to alter stream‐ground‐water interactions. The present study examined the effect of an artificially constructed gravel bar and re‐meandered stream channel on lateral hyporheic exchange flow and chemistry in two lowland N‐rich streams in southern Ontario, Canada. Nitrate concentrations were relatively high, ranging from 0.5 to 1.3 mg N/l in both streams during spring through fall months. However, nitrate concentrations showed a steep decline as stream water entered the gravel bar and the meander bends. Differences between observed and predicted nitrate concentrations based on conservative ion concentration patterns indicated that 40‐100 and 68‐98% of the nitrate entering the hyporheic zone was removed in the gravel bar and meanders, respectively. Rapid depletion of dissolved oxygen concentrations along lateral hyporheic flow paths and denitrifying potentials assayed by the acetylene block technique in hyporheic sediments suggests that denitrification was an important mechanism of nitrate depletion. Despite the high rate of nitrate removal, the flux of stream water laterally entering the constructed gravel bar and meander bends was very small, and hyporheic nitrate removal was <0.015% of the daily stream load during base‐flow periods in summer and fall. The effects of restoration projects on hyporheic zone dynamics are often limited in lowland streams by low channel gradients and fine floodplain sediments with low interstitial flows that restrict the magnitude of the stream‐hyporheic connection.  相似文献   

4.
He, Laien and Gregory V. Wilkerson, 2011. Improved Bankfull Channel Geometry Prediction Using Two‐Year Return‐Period Discharge. Journal of the American Water Resources Association (JAWRA) 47(6):1298–1316. DOI: 10.1111/j.1752‐1688.2011.00567.x Abstract:  Bankfull discharge (Qbf) and bankfull channel geometry (i.e., width, Wbf; mean depth, Dbf; and cross‐section area, Abf) are important design parameters in stream restoration, habitat creation, mined land reclamation, and related projects. The selection of values for these parameters is facilitated by regional curves (regression models in which Qbf, Wbf, Dbf, and Abf are predicted as a function of drainage area, Ada). This paper explores the potential for the two‐year return‐period discharge (Q2) to improve predictions of Wbf, Dbf, and Abf. Improved predictions are expected because Q2 estimates integrate the effects of basin drainage area, climate, and geology. For conducting this study, 29 datasets (each representing one hydrologic region) spanning 14 states in the United States were analyzed. We assessed the utility of using Q2 by comparing statistical measures of regression model performance (e.g., coefficient of determination and Akaike’s information criterion). Compared to using Ada, Q2 is shown to be a “clearly superior” predictor of Wbf, Dbf, and Abf, respectively, for 21, 13, and 25% of the datasets. By contrast, Ada yielded a clearly superior model for predicting Wbf, Dbf, and Abf, respectively, for 0, 0, and 14% of the datasets. Our conclusion is that it alongside with developing conventional regional curves using Ada it is prudent to develop regional curves that use Q2 as an independent variable because in some cases the resulting model will be superior.  相似文献   

5.
Huang, Jung-Chen, William J. Mitsch, and Andrew D. Ward, 2010. Design of Experimental Streams for Simulating Headwater Stream Restoration. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00467.x Abstract: Headwater streams flowing through agricultural fields in the midwestern United States have been extensively modified to accommodate subsurface drainage systems, resulting in deepened, straightened, and widened streams. To restore these headwater streams, partial or total reconstruction of channels is frequently attempted. There are different approaches to reconstructing the channel, yet there is little evidence that indicates which promises more success and there has been no experimental work to evaluate these approaches. This study designs three experimental channels – two-stage, self-design, and straightened channels – on a human-created swale at the Olentangy River Wetland Research Park, Columbus, Ohio, for long-term evaluation of headwater stream evolution after restoration. The swale receives a continuous flow of pumped river water from upstream wetlands. Using streamflow and stage data for the past 12 years, a channel-forming discharge of 0.18 m3/s was estimated from bankfull discharge, effective discharge, and recurrence interval. These stream channels, after construction, will be monitored to evaluate physical, chemical, and biological responses to different channels over a decade-long experiment. We hypothesize that the three stream restoration designs will eventually evolve to a similar channel form but with different time periods for convergence. Monitoring the frequency and magnitude of changes over at least 10 years is needed to document the most stable restored channel form.  相似文献   

6.
River channel migration and cutoff events within large river riparian corridors create heterogeneous and biologically diverse landscapes. However, channel stabilization (riprap and levees) impede the formation and maintenance of riparian areas. These impacts can be mitigated by setting channel constraints away from the channel. Using a meander migration model to measure land affected, we examined the relationship between setback distance and riparian and off-channel aquatic habitat formation on a 28-km reach of the Sacramento River, California, USA. We simulated 100 years of channel migration and cutoff events using 11 setback scenarios: 1 with existing riprap and 10 assuming setback constraints from about 0.5 to 4 bankfull channel widths (bankfull width: 235 m) from the channel. The percentage of land reworked by the river in 100 years relative to current (riprap) conditions ranged from 172% for the 100-m constraint setback scenario to 790% for the 800-m scenario. Three basic patterns occur as the setback distance increases due to different migration and cutoff dynamics: complete restriction of cutoffs, partial restriction of cutoffs, and no restriction of cutoffs. Complete cutoff restriction occurred at distances less than about one bankfull channel width (235 m), and no cutoff restriction occurred at distances greater than about three bankfull widths (∼700 m). Managing for point bars alone allows the setbacks to be narrower than managing for cutoffs and aquatic habitat. Results suggest that site-specific “restriction of cutoff” thresholds can be identified to optimize habitat benefits versus cost of acquired land along rivers affected by migration processes.  相似文献   

7.
ABSTRACT: Stream meander restoration designs currently used by many state and local government agencies are often based on empirical equations, such as those developed by Leopold and Wolman (1957; 1960). In order to assess the suitability of these equations and propose alternative strategies, 18 sites in Central Maryland were selected and data on channel planform, cross-sections, sediments, and spacing and sizing of the pools and riffles were collected and analyzed to characterize the channel type in the study area. A large bias was found comparing the meander parameters measured to those computed using the Leopold and Wolman equations for the streams in central Maryland. Based on these results, appropriate empirical equations for the study area that can assist in stream restoration designs were investigated. An additional approach that can assist in stream restoration consists of the application of a detailed stream reconnaissance to verify that the restoration project is consistent with the natural form and processes of the river.  相似文献   

8.
    
ABSTRACT: An extensive group of datasets was analyzed to examine factors affecting widths of streams and rivers. Results indicate that vegetative controls on channel size are scale dependent. In channels with watersheds greater than 10 to 100 km2, widths are narrower in channels with thick woody bank vegetation than in grass lined or nonforested banks. The converse is true in smaller streams apparently due to interactions between woody debris, shading, understory vegetation, rooting characteristics, and channel size. A tree based statistical method (regression tree) is introduced and tested as a tool for identifying thresholds of response and interpreting interactions between variables. The implications of scale dependent controls on channel width are discussed in the context of stable channel design methods and development of regional hydraulic geometry curves.  相似文献   

9.
ABSTRACT: A computer program written in BASIC calculates net changes in stream channel cross-sections. Calculations are based on dividing the channel cross-section into discrete regions of scour and fill. Internal boundaries of these regions (along the x-axis of the cross-section) are determined by the location of vertical depth measurements taken at two distinct times. The right and left boundaries of the cross-section can be specified so that scour or fill can be calculated for any portion of the profile desired.  相似文献   

10.
Using data related to stream order and the morphological characteristics associated with streams of different discharge rates, an estimate of the river resources of the United States is made. The national totals are: 3,200,000 miles total length of rivers; 15,000 square miles of river surface; and 29 cubic miles of water stored in river channels. Using the same techniques, more exact estimates may be made for individual river basins. Suggestions are given for application of the techniques and river data in the management of water resources.  相似文献   

11.
Stream restoration projects are often based on morphological form or stream type and, as a result, there needs to be a clear tie established between form and function of the stream. An examination of the literature identifies numerous relationships in naturally forming streams that link morphologic form and stream processes. Urban stream restoration designs often work around infrastructure and incorporate bank stabilization and grade control structures. Because of these imposed constraints and highly altered hydrologic and sediment discharge regimens, the design of urban channel projects is rather unclear. In this paper, we examine the state of the art in relationships between form and processes, the strengths and weaknesses of these existing relationships, and the current lack of understanding in applying these relationships in the urban environment. In particular, we identify relationships that are critical to urban stream restoration projects and provide recommendations for future research into how this information can be used to improve urban stream restoration design. It is also suggested that improving the success of urban restoration projects requires further investigation into incorporating process-based methodologies, which can potentially reduce ambiguity in the design and the necessity of using an abundant amount of in-stream structures.  相似文献   

12.
ABSTRACT: The at-a-station hydraulic geometry of stream channels can serve as a predictor of alluvial stream channel behavior. This geometry is the empirical relations describing changes in water surface width, mean depth, and mean velocity with changing discharge. The exponent values are correlated with channel morphology and behavior such as scour and fill, flow resistance, bank resistance, and competence. Channel behavior and morphology are apparently related, but some causes for effects are uncertain. Several studies, using empirical and theoretical bases, are reviewed here to illustrate the relation between hydraulic geometry and channel behavior, but the relations are not always consistent. Hydraulic geometry variables are easy to measure and readily available, but they do not always reflect what may be more important ones such as turbulence, the velocity distribution profile, and distribution and cohesion of sediment particles. This paper illustrates some of these problems, provides some solutions, and addresses need for more work to better predict stream channel behavior from hydraulic geometry  相似文献   

13.
    
A fluvial geomorphological methodology for designing natural stable channels is being widely applied for river restoration. It is an analogue procedure, as the W/d ratio and sinuosity from a reference reach are scaled to determine the restoration design. The choice of reference reach is crucial and published criteria specify that it should be stable, correspond to the stream type at the restoration site, have the same valley type, and be from the same hydrophysiographic region. For stable, meandering gravel cobble bed rivers flowing through alluvial flood plains (C3 and C4 stream types), UK regime equations are used to evaluate the procedure. Successful design requires particular combinations of the ratios of bankfull discharge, bed material size and load, valley slope, and bank vegetation category between the reference and restoration sites. These critical ratios, which are confirmed by U.S. field data, provide guidelines for selecting a suitable reference reach for C3‐C4 stream types. They also indicate that the reference reach can be in any valley type or hydrophysiographic region. The geomorphological procedure will apply to all stable stream types, provided the reference reach is correctly identified. Specific guidelines for each stream type await the development of additional regime equations.  相似文献   

14.
ABSTRACT: Today most rivers are not freely flowing but are highly regulated to meet both human and wildlife needs. Several models allow the determination of instream flows that are needed to meet wildlife demands. However, these models are based on assumptions that limit their applicability to certain types of rivers. While these limitations do not preclude the use of the models on other types of rivers, like the Platte River in Nebraska, their limitations should be considered and accommodated by those making instream flow planning and management decisions. Other factors affecting channel morphology and its associated wildlife habitat, such as threshold values and vegetation are not adequately considered by current concepts. If rivers are to be managed to provide wildlife habitat, these factors will have to be addressed.  相似文献   

15.
ABSTRACT: While minimum variance theory appears to offer an explanation for the hydraulic behaviour and regularity among channel systems it is not entirely successful in predicting the regime of a channel system. In the case of the Namoi-Gwydir river system the hydraulic variables velocity, depth, width, slope, friction, and shear appear to govern the behaviour and, hence regime of the channels. The significance of sediment load in determining regime could not be assessed.  相似文献   

16.
Bartholow, John M., 2010. Constructing an Interdisciplinary Flow Regime Recommendation. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00461.x Abstract: It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river’s natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river’s channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river.  相似文献   

17.
ABSTRACT: Channel incision is a pervasive problem that threatens infrastructure, destroys arable land, and degrades environmental resources. A program initiated in 1983 is developing technology for rehabilitation of watersheds with erosion and sedimentation problems caused by incision. Demonstration projects are located in 15 watersheds in the hills of northwest Mississippi. Watershed sizes range from 0.89 to 1,590 km2, and measured suspended sediment yields average about 1,100 t km-2-yr-1. Water quality is generally adequate to support aquatic organisms, but physical habitat conditions are poor. Rehabilitation measures, which are selected and laid out using a subjective integration of hydraulic and geotechnical stability analyses, include grade controls, bank protection, and small reservoirs. Aquatic habitat studies indicate that stone-protected stilling basins below grade-control weirs and habitats associated with drop pipes and stone spur dikes are assets to erosion-damaged streams. Additional recovery of habitat resources using modified stone stabilization designs, woody vegetation plantings, and reservoir outlets designed to provide non-zero minimum flows is under investigation.  相似文献   

18.
The measurement of the bed shear stress along vegetated river beds is essential for accurately predicting the water level, velocity and solute and sediment transport fluxes in computational hydroenvironmental models. Details are given herein of an experimental and theoretical study to determine the bed boundary shear stress along vegetated river beds introducing a novel field measuring method, namely the FliessWasserStammtisch (FST)-hemispheres. Although investigations have been conducted previously for sedimentary channels using the FST-hemispheres, this preliminary study is thought to be the first time that such hemispheres have been used to investigate the bed shear stresses in vegetated channels. FST-hemispheres were first developed by Statzner and Müller [1989. Standard hemispheres as indicators of flow characteristics in lotic benthos research. Freshwater Biology 21, 445-459] to act as an integrated indicator of the gross hydrodynamic stresses present near the bed. Test and validation data were found to be at least of the same order of magnitude for the stresses predicted from literature for sedimentary channels, with this study establishing the commencement of a database of calibrated FST-hemisphere laboratory data for vegetated channel beds. In a series of experiments, depths ranging from 0.1 to 0.28m were considered, equating directly to comparable conditions in small rivers or streams. The results of this study provide a basis for enabling the FST-hemispheres to be used to evaluate the boundary shear stress for a wider range of applications in the future, including vegetated river beds.  相似文献   

19.
Stream tributaries in the Des Moines River basin have been classified according to the glacial terrain through which they flow. Three stream types were categorized as follows: (1) streams that flow entirely on Wisconsin drift, (2) streams that flow entirely on Kansan drift, and (3) streams that have their headwaters located on new drift but have their lower reaches flowing on older drift. Selected channel and valley characteristics were measured and used to verify the stream type classification. Five variables were chosen for use in a multiple linear discriminatory analysis, which is a statistical technique developed for the purpose of classifying observations into one of several categories which have been predetermined. The streams in each group were verified with the exception of three anomalies based on the probability associated with the largest linear discriminant function. The rationale for the three anomalous streams is not easily determined. But, they are considered to be associated with pre-glacial drainage or at least pre-Wisconsin age drainage. Otherwise, the analysis shows that the major channels and valleys in the Des Moines River basin tend to reflect the glaciated upland surface.  相似文献   

20.
Abstract: A mix of causative mechanisms may be responsible for flood at a site. Floods may be caused because of extreme rainfall or rain on other rainfall events. The statistical attributes of these events differ according to the watershed characteristics and the causes. Traditional methods of flood frequency analysis are only adequate for specific situations. Also, to address the uncertainty of flood frequency estimates for hydraulic structures, a series of probabilistic analyses of rainfall‐runoff and flow routing models, and their associated inputs, are used. This is a complex problem in that the probability distributions of multiple independent and derived random variables need to be estimated to evaluate the probability of floods. Therefore, the objectives of this study were to develop a flood frequency curve derivation method driven by multiple random variables and to develop a tool that can consider the uncertainties of design floods. This study focuses on developing a flood frequency curve based on nonparametric statistical methods for the estimation of probabilities of rare floods that are more appropriate in Korea. To derive the frequency curve, rainfall generation using the nonparametric kernel density estimation approach is proposed. Many flood events are simulated by nonparametric Monte Carlo simulations coupled with the center Latin hypercube sampling method to estimate the associated uncertainty. This study applies the methods described to a Korean watershed. The results provide higher physical appropriateness and reasonable estimates of design flood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号