首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tufekcioglu, Mustafa, Richard C. Schultz, George N. Zaimes, Thomas M. Isenhart, and Aydin Tufekcioglu, 2012. Riparian Grazing Impacts on Streambank Erosion and Phosphorus Loss via Surface Runoff. Journal of the American Water Resources Association (JAWRA) 1‐11. DOI: 10.1111/j.1752‐1688.2012.12004.x Abstract: Surface runoff is one of the major pathways of sediment and phosphorus (P) transport to surface waters. Rainfall simulations were conducted on nine grazed pasture sites with different stocking rates in three different Iowa (United States) regions. The purpose of the simulations was to determine the impacts of cattle grazing on the amounts of sediment and P in surface runoff within a 15‐m wide strip on both sides of the stream from different source areas (SAs). These riparian SAs included stream‐side loafing areas, cattle streambank access paths to the stream, and the other vegetated areas adjacent to the streambanks. The runoff samples collected during the simulations were analyzed for suspended sediment (SS) and total phosphorus (TP). Soil bulk density and antecedent soil moisture samples were collected around the rainfall simulation plots to identify differences in compaction, infiltration, and surface runoff among the SAs. SS and TP losses from access paths and loafing areas within the 15‐m wide strips accounted for up to 72 and 55% of the total losses, respectively, even though they accounted for only 2.7% of the total area within the 15‐m wide strips. This suggests that access paths and loafing areas require special attention to mitigate the impacts of cattle on stream water pollution. Significant correlations were found between stocking rates and both SS and TP losses suggesting that low stocking rates can reduce sediment and P export to streams from the SAs.  相似文献   

2.
Ecosystem processes such as water infiltration and denitrification largely determine how riparian buffers function to protect surface water quality. Reclaimed mine areas offer a unique opportunity to study the restoration of riparian function without the confounding influence of past land use. Between 1980 and 2000 in southern Illinois, agricultural fields with forest buffers were established along three restored stream reaches in reclaimed mine land. Our research objective was to compare common indicators of soil quality (infiltration, soil C and N, bulk density, and soil moisture) between forest and cultivated riparian zones to determine if riparian function was being restored. Soil bulk density was significantly lower in the forest buffers compared to the agricultural fields. The forest buffers had greater soil total C, total N, and moisture levels than agricultural fields likely due to greater organic matter inputs. Soil total C and N levels in forest buffers were positively related to age of restoration, indicating soil quality is gradually being restored in the buffers. Restoration success of riparian buffers should not be estimated by the return of structure alone; it also includes reestablishment of functions such as nutrient cycling and water retention that largely determine water quality benefits. Watershed planning efforts can expect a lag time on the order of decades between riparian restoration activities and surface water quality improvement.  相似文献   

3.
Newbold, J. Denis, Susan Herbert, Bernard W. Sweeney, Paul Kiry, and Stephen J. Alberts, 2010. Water Quality Functions of a 15-Year-Old Riparian Forest Buffer System. Journal of the American Water Resources Association (JAWRA) 46(2):299-310. DOI: 10.1111/j.1752-1688.2010.00421.x Abstract: We monitored long-term water quality responses to the implementation of a three-zone Riparian Forest Buffer System (RFBS) in southeastern Pennsylvania. The RFBS, established in 1992 in a 15-ha agricultural (row crop) watershed, consists of: Zone 1, a streamside strip (∼10 m wide) of permanent woody vegetation for stream habitat protection; Zone 2, an 18- to 20-m-wide strip reforested in hardwoods upslope from Zone 2; and Zone 3, a 6- to 10-m-wide grass filter strip in which a level lip spreader was constructed. The monitoring design used paired watersheds supplemented by mass balance estimates of nutrient and sediment removal within the treated watershed. Tree growth was initially delayed by drought and deer damage, but increased after more aggressive deer protection (1.5 m polypropylene shelters or wire mesh protectors) was instituted. Basal tree area increased ∼20-fold between 1998 and 2006, and canopy cover reached 59% in 2006. For streamwater nitrate, the paired watershed comparison was complicated by variations in both the reference stream concentrations and in upslope groundwater nitrate concentrations, but did show that streamwater nitrate concentrations in the RFBS watershed declined relative to the reference stream from 2002 through the end of the study in early 2007. A subsurface nitrate budget yielded an average nitrate removal by the RFBS of 90 kg/ha/year, or 26% of upslope subsurface inputs, for the years 1997 through 2006. There was no evidence from the paired watershed comparison that the RFBS affected streamwater phosphorus concentration. However, groundwater phosphorus did decline within the buffer. Overland flow sampling of 23 storms between 1997 and 2006 showed that total suspended solids concentration in water exiting the RFBS to the stream was on average 43% lower than in water entering the RFBS from the tilled field. Particulate phosphorus concentration was lower by 22%, but this removal was balanced by a 26% increase in soluble reactive phosphorus so that there was no net effect on total phosphorus.  相似文献   

4.
This study quantified the impact of bison and cattle grazing management practices on bare ground coverage at the watershed, riparian, and forested riparian scales within the Flint Hills ecoregion in Kansas. We tested for correlations between bare ground coverage and fluvial suspended sediment concentrations during base‐flow and storm‐flow events. We used remotely sensed imagery combined with field surveys to classify ground cover and quantify the presence of bare ground. Base‐flow water samples were collected bi‐monthly during rain‐free periods and 24 h following precipitation events. Storm‐flow water samples were collected on the rising limb of the hydrograph, using single‐stage automatic samplers. Ungrazed treatments contained the lowest coverage of bare ground at the watershed, riparian, and forested riparian scales. Bison treatments contained the highest coverage of bare ground at the watershed scale, while high‐density cattle treatments contained the highest coverage of bare ground at the riparian and forested riparian scales. In bison and cattle‐grazed treatments, a majority of bare ground was located near fence lines, watershed boundaries, and third‐ and fourth‐order stream segments. Inorganic sediment concentrations at base flow were best predicted by riparian bare ground coverage, while storm‐flow sediment concentrations were best predicted by watershed scale bare ground coverage.  相似文献   

5.
Merten, Eric C., Nathaniel A. Hemstad, Randall K. Kolka, Raymond M. Newman, Elon S. Verry, and Bruce Vondracek, 2010. Recovery of Sediment Characteristics in Moraine, Headwater Streams of Northern Minnesota After Forest Harvest. Journal of the American Water Resources Association (JAWRA) 46(4): 733-743. DOI: 10.1111/j.1752-1688.2010.00445.x Abstract: We investigated the recovery of sediment characteristics in four moraine, headwater streams in north-central Minnesota after forest harvest. We examined changes in fine sediment levels from 1997 (preharvest) to 2007 (10 years postharvest) at study plots with upland clear felling and riparian thinning, using canopy cover, proportion of unstable banks, surficial fine substrates, residual pool depth, and streambed depth of refusal as response variables. Basin-scale year effects were significant (p < 0.001) for all responses when evaluated by repeated-measures ANOVAs. Throughout the study area, unstable banks increased for several years postharvest, coinciding with an increase in windthrow and fine sediment. Increased unstable banks may have been caused by forest harvest equipment, increased windthrow and exposure of rootwads, or increased discharge and bank scour. Fine sediment in the channels did not recover by summer 2007, even though canopy cover and unstable banks had returned to 1997 levels. After several storm events in fall 2007, 10 years after the initial sediment input, fine sediment was flushed from the channels and returned to 1997 levels. Although our study design did not discern the source of the initial sediment inputs (e.g., forest harvest, road crossings, other natural causes), we have shown that moraine, headwater streams can require an extended period (up to 10 years) and enabling event (e.g., high storm flows) to recover from large inputs of fine sediment.  相似文献   

6.
This literature review addresses how wide a streamside forest buffer needs to be to protect water quality, habitat, and biota for small streams (≤~100 km2 or ~5th order watershed) with a focus on eight functions: (1) subsurface nitrate removal varied inversely with subsurface water flux and for sites with water flux >50 l/m/day (~40% avg base flow to Chesapeake Bay) median removal efficiency was 55% (26‐64%) for buffers <40 m wide and 89% (27‐99%) for buffers >40 m wide; (2) sediment trapping was ~65 and ~85% for a 10‐ and 30‐m buffer, respectively, based on streamside field or experimentally loaded sites; (3) stream channel width was significantly wider when bordered by ~25‐m buffer (relative to no forest) with no additional widening for buffers ≥25 m; (4) channel meandering and bank erosion were lower in forest but more studies are needed to determine the effect of buffer width; (5) temperature remained within 2°C of levels in a fully forested watershed with a buffer ≥20 m but full protection against thermal change requires buffers ≥30 m; (6) large woody debris (LWD) has been poorly studied but we infer a buffer width equal to the height of mature streamside trees (~30 m) can provide natural input levels; (7, 8) macroinvertebrate and fish communities, and their instream habitat, remain near a natural or semi‐natural state when buffered by ≥30 m of forest. Overall, buffers ≥30 m wide are needed to protect the physical, chemical, and biological integrity of small streams.  相似文献   

7.
Abstract: Phosphorus and sediment are major nonpoint source pollutants that degrade water quality. Streambank erosion can contribute a significant percentage of the phosphorus and sediment load in streams. Riparian land‐uses can heavily influence streambank erosion. The objective of this study was to compare streambank erosion along reaches of row‐cropped fields, continuous, rotational and intensive rotational grazed pastures, pastures where cattle were fenced out of the stream, grass filters and riparian forest buffers, in three physiographic regions of Iowa. Streambank erosion was measured by surveying the extent of severely eroding banks within each riparian land‐use reach and randomly establishing pin plots on subsets of those eroding banks. Based on these measurements, streambank erosion rate, erosion activity, maximum pin plot erosion rate, percentage of streambank length with severely eroding banks, and soil and phosphorus losses per unit length of stream reach were compared among the riparian land‐uses. Riparian forest buffers had the lowest streambank erosion rate (15‐46 mm/year) and contributed the least soil (5‐18 tonne/km/year) and phosphorus (2‐6 kg/km/year) to stream channels. Riparian forest buffers were followed by grass filters (erosion rates 41‐106 mm/year, soil losses 22‐47 tonne/km/year, phosphorus losses 9‐14 kg/km/year) and pastures where cattle were fenced out of the stream (erosion rates 22‐58 mm/year, soil losses 6‐61 tonne/km/year, phosphorus losses 3‐34 kg/km/year). The streambank erosion rates for the continuous, rotational, and intensive rotational pastures were 101‐171, 104‐122, and 94‐170 mm/year, respectively. The soil losses for the continuous, rotational, and intensive rotational pastures were 197‐264, 94‐266, and 124‐153 tonne/km/year, respectively, while the phosphorus losses were 71‐123, 37‐122, and 66 kg/km/year, respectively. The only significant differences for these pasture practices were found among the percentage of severely eroding bank lengths with intensive rotational grazed pastures having the least compared to the continuous and rotational grazed pastures. Row‐cropped fields had the highest streambank erosion rates (239 mm/year) and soil losses (304 tonne/km/year) and very high phosphorus losses (108 kg/km/year).  相似文献   

8.
Abstract: Riparian buffer forests and vegetative filter strips are widely recommended for improving surface water quality, but grass‐shrub riparian buffer system (RBSs) are less well studied. The objective of this study was to assess the influence of buffer width and vegetation type on the key processes and overall reductions of total suspended solids (TSS), phosphorus (P), and nitrogen (N) from simulated runoff passed through established (7‐year old) RBSs. Nine 1‐m RBS plots, with three replicates of three vegetation types (all natural selection grasses, two‐segment buffer with native grasses and plum shrub, and two‐segment buffer with natural selection grasses and plum shrub) and widths ranging from 8.3 to 16.1 m, received simulated runoff having 4,433 mg/l TSS from on‐site soil, 1.6 mg/l total P, and 20 mg/l total N. Flow‐weighted samples were collected by using Runoff Sampling System (ROSS) units. The buffers were very efficient in removal of sediments, N, and P, with removal efficiencies strongly linked to infiltration. Mass and concentration reductions averaged 99.7% and 97.9% for TSS, 91.8% and 42.9% for total P, and 92.1% and 44.4% for total N. Infiltration alone could account for >75% of TSS removal, >90% of total P removal, and >90% of total N removal. Vegetation type induced significant differences in removal of TSS, total P, and total N. These results demonstrate that adequately designed and implemented grass‐shrub buffers with widths of only 8 m provide for water quality improvement, particularly if adequate infiltration is achieved.  相似文献   

9.
Arora, Kapil, Steven K. Mickelson, Matthew J. Helmers, and James L. Baker, 2010. Review of Pesticide Retention Processes Occurring in Buffer Strips Receiving Agricultural Runoff. Journal of the American Water Resources Association (JAWRA) 46(3):618-647. DOI: 10.1111/j.1752-1688.2010.00438.x Abstract: Review of the published results shows that the retention of the two pesticide carrier phases (runoff volume and sediment mass) influences pesticide mass transport through buffer strips. Data averaged across different studies showed that the buffer strips retained 45% of runoff volume (ranging between 0 and 100%) and 76% of sediment mass (ranging between 2 and 100%). Sorption (soil sorption coefficient, Koc) is one key pesticide property affecting its transport with the two carrier phases through buffer strips. Data from different studies for pesticide mass retention for weakly (Koc < 100), moderately (100 < Koc < 1,000), and strongly sorbed pesticides (Koc > 1,000) averaged (with ranges) 61 (0-100), 63 (0-100), and 76 (53-100) %, respectively. Because there are more data for runoff volume and sediment mass retention, the average retentions of both carrier phases were used to calculate that the buffer strips would retain 45% of weakly to moderately sorbed and 70% of strongly sorbed pesticides on an average basis. As pesticide mass retention presented is only an average across several studies with different experimental setups, the application of these results to actual field conditions should be carefully examined.  相似文献   

10.
Segura, Catalina and Derek B. Booth, 2010. Effects of Geomorphic Setting and Urbanization on Wood, Pools, Sediment Storage, and Bank Erosion in Puget Sound Streams. Journal of the American Water Resources Association (JAWRA) 46(5):972-986. DOI: 10.1111/j.1752-1688.2010.00470.x Abstract: Interrelationships between urbanization, the near-riparian zone, and channel morphology were examined in 44 lowland stream reaches in the Puget Lowlands of western Washington, United States. Both the degree of urbanization and channel type control channel response to a range of instream and riparian conditions. Some of these relationships are not evident in lumped datasets (i.e., with all channel types and/or degrees of urbanization) and highlight the importance of fluvial geomorphology in determining channel response. We found that in low-urbanized watersheds dominated by forced pool-riffle and plane-bed morphologies, the frequency and distribution of large woody debris (LWD), pool spacing, sediment storage, and bank erosion have a strong relationship with channel confinement and characteristics of near-riparian vegetation. In contrast, high-urbanized reaches dominated by simplified morphologies are substantially less sensitive to the condition of the near-riparian zone (e.g., size of the near-riparian vegetation and the level of channel confinement), due to the common disconnection of stream and floodplain caused by the placement of stabilizing structures in the banks. These structures are typically placed to prevent erosion; however, they also result in fewer LWD and pools, less sediment storage, and higher potential for incision.  相似文献   

11.
Abstract: A stream mesocosm experiment was conducted to study the ecosystem‐wide effects of two replicated flow hydrograph treatments programmed in an attempt to compare a simulated predevelopment condition to the theoretical changes that new development brings, while accounting for engineering design criteria for urban stormwater management. Accordingly, the treatments (three replicates each) differed in base flow between events and in the rise to, fall from, and duration of peak flow during simulated storm hydrographs, which were triggered by real rain events occurring outside over a 96‐day period from summer to fall, 2005. Incident irradiance, initial substrate quality, and water quality were similar between treatments. Sampling was designed to study the interactions among the treatment flow dynamics, sediment transport processes, streambed nutrients, and biotic structure and function. What appeared most important to the overall structure and function of the mesocosm ecosystems beyond those changes resulting from natural seasonality were (1) the initial mass of fines that infiltrated into the gravel bed, which had a persistent effect on nitrogen biogeochemistry and (2) the subsequent fine sediment accumulation rate, which was unexpectedly similar between treatments, and affected the structure of the macroinvertebrate community equally as the experiment progressed. Invertebrate taxa preferring soft beds dominated when the gravel was comprised of 5‐10% fines. The dominant invertebrate algal grazer had vacated the channels when fines exceeded 15%, but this effect could not be separated from what appeared to be a seasonal decline in insect densities over the course of the study. Neither hydrograph treatment allowed for scour or other potential for flushing of fines. This demonstrated the potential importance of interactions between hydrology and fine sediment loading dynamics on stream ecosystems in the absence of flows that would act to mobilize gravel beds.  相似文献   

12.
Abstract: The joint influences of riparian vegetation and urbanization on fish assemblages were analyzed by depletion sampling in paired forested and nonforested reaches of 25 small streams along an urbanization gradient. Nonforested reaches were narrower than their forested counterparts, so densities based on surface area differ from linear densities (based on reach length). Linear densities (based on number or biomass of fish) of American eel, white sucker and tesselated darter, and the proportion of biomass of benthic invertivores were significantly higher in nonforested reaches, while linear densities of margined madtom and the number of pool species were significantly higher in forested reaches. Observed riparian effects may reflect differences in habitat and algal productivity between forested and nonforested reaches. These results suggest that relatively small‐scale riparian restoration projects can affect local geomorphology and the abundance of fish. Dense vegetative cover in riparian zones and similar or analogous habitats in both forested and nonforested reaches, the relatively small scale of the nonforested reaches, and the low statistical power to detect differences in abundance of rare species may have limited the observed differences between forested and nonforested reaches. There was a strong urbanization gradient, with reductions of intolerant species and increases of tolerant species and omnivores with increasing urbanization. Interactions between riparian vegetation type and urbanization were found for blacknose dace, creek chub, tesselated darter, and the proportion of biomass of lithophilic spawners. The study did not provide consistent support for the hypotheses that responses of fish to riparian vegetation would be overwhelmed by urban degradation or insignificant at low urbanization.  相似文献   

13.
Abstract: Pollutant loading from storm runoff is considered to be an important component of nonpoint source pollution in urban areas. In developing countries, because of the accelerated urbanization and motorization, storm runoff pollution has become a challenge for improving aquatic environmental quality. An effective storm runoff management plan needs to be developed, and questions concerning how much and which proportion of a storm should be treated need to be answered. In this study, a model is developed to determine the fraction of storm runoff that needs to be treated to meet the discharge standard within a given probability. The model considers that the pollutants can be mobilized during the early stage of a storm. The model is applied to a field study of polycyclic aromatic hydrocarbons (PAHs) in road runoff in Beijing, China. In this case, the probability that the PAH load will be mobilized with suspended sediments by the earlier portion of the flush is 73%. Given the high PAH loading in the study area and the referenced discharge standard, the probability that the entire runoff should be captured and treated is 94%. Thus, urban planners need to consider treatment systems for the majority of the storms in this area, whether the PAH load is in the first flush or not. This methodology can be applied to other regions where PAH loads may result in different management outcomes.  相似文献   

14.
Abstract: Unpaved road‐stream crossings increase sediment yields in streams and alter channel morphology and stability. Before restoration and sedimentation reduction strategies can be implemented, a priority listing of unpaved road‐stream crossings must be created. The objectives of this study were to develop a sedimentation risk index (SRI) for unpaved road‐stream crossings and to prioritize 125 sites in the Choctawhatchee watershed (southeastern Alabama) using this model. Field surveys involved qualitative and quantitative observations of 73 metrics related to waterway conditions, crossing structures, road approaches, and roadside soil erosion. The road‐stream crossing risk analyses involved elimination of candidate metrics based on redundancy, skewness, lack of data, professional judgment, lack of nonzero values, unbalanced box plots, and limited ranges of values. A final selection of 12 metrics formed the SRI and weighed factors involving soil erodibility, road sedimentation abatement features, and stream morphology alteration. The SRI was organized into narrative categories (excellent, good, fair, poor, and very poor) based on the distribution of scores. No excellent sites (scores ≥55) were found in this study, 17 (20.7%) were good (low sedimentation risk), 37 (45.1%) were fair (moderate sedimentation risk), 26 (31.7%) were poor (high sedimentation risk), and two (2.5%) were very poor (high sedimentation risk). There was no significant difference in SRI scores among crossing structure type (round culverts, box culverts, and bridges) (H = 4.31, df = 2, p = 0.058). A future study of the Choctawhatchee watershed involving the same study sites could assess the success of restoration plans and activities based on site score improvement or decline.  相似文献   

15.
Romeis, J. Joshua, C. Rhett Jackson, L. Mark Risse, Andrew N. Sharpley, and David E. Radcliffe, 2011. Hydrologic and Phosphorus Export Behavior of Small Streams in Commercial Poultry‐Pasture Watersheds. Journal of the American Water Resources Association (JAWRA) 1‐19. DOI: 10.1111/j.1752‐1688.2011.00521.x Abstract: Few watershed‐scale studies have evaluated phosphorus export in streamflow from commercial poultry‐pasture operations. Continuous streamflow and mixed‐frequency water quality datasets were collected from nine commercial poultry‐pasture (AG) and three forested (FORS) headwater streams (2.4‐44 ha) in the upper Etowah River basin of Georgia to estimate total P (TP) loads and examine variability of hydrologic response and water quality of storm and nonstorm‐flow regimes. Data collection duration ranged from 18 to 22 months, and approximately 1,600 water quality samples were collected. Significant (p < 0.1) inverse relationships were detected between peak flow response variables and both drainage area and fraction of forest cover. Order‐of‐magnitude differences in TP and dissolved reactive P (DRP) concentration were observed between AG and FORS sites and among AG sites. TP yields of FORS sites ranged from 0.01 to 0.1 kg P/ha. Yields of AG sites ranged from 0.031 to 3.17 kg P/ha (median = 0.354 kg P/ha). With 95% confidence intervals, AG yields ranged from 0.025 to 13.1 kg P/ha. These small‐watershed‐scale yields were similar to field‐scale yields measured in other studies in other regions. TP yields were significantly related to area‐weighted Mehlich‐1 soil test P concentrations (p = 0.0073) and base‐flow water sample P concentrations (p 0.0005). Water quality sampling during base‐flow conditions may be a useful screening tool for P risk‐based management programs.  相似文献   

16.
Abstract: Earlier measurements of stream channel geometry on 19 reaches were repeated to provide a longitudinal study of stream channel adjustment over 13 years (1987‐2000) in the urbanizing Gwynns Falls, Maryland watershed. We observed both enlargement and reduction in channel size, depending on the extent of upstream development, the timing and location of urbanization and upstream channel adjustment, and the presence of hydrologic constrictions and grade controls. Based on a relatively simple visual assessment of the composition, size, and extent of instream sediment storage, we categorized stream reaches into three phases: aggraded (7 sites), early erosion (7 sites), and late erosion (5 sites). Aggraded sites had point and lateral bars mantled with fine‐grained sediment and experienced some reduction in cross‐sectional area, primarily through the deposition of fine‐grained material on bars in the channel margins. Early erosion sites had smaller bars and increases in channel cross‐sectional area as a consequence of the evacuation of in‐channel fine‐grained sediment. Fine‐grained sediments were either entirely absent or found only at a few high bar elevations at late erosion sites. Sediment evacuation from late erosion sites has both enlarged and simplified channels, as demonstrated by an increase in cross‐sectional area and a strong decrease in channel width variation. Channel cross‐sectional area enlargement, reduced channel width variation, and channel incision were ubiquitous at erosion sites. As a result, overbank flows were less common in the erosion sites as determined by high water marks left by a 2‐year flood that occurred during the study period. Principal causes for channel changes appear to be increased high flow durations and reduced sediment supply. Spatial variation in channel conditions could not be tied simply to sub‐basin impervious cover or watershed area. In‐channel sediment storage is a useful indicator of channel form and adjustment. When combined with information on development and sedimentation conditions in the contributing drainage, instream sediment storage can be used to effectively assess future channel adjustments.  相似文献   

17.
Abstract: This study evaluates the effects of urban land use on stream channels and riparian ground‐water levels along low‐order Inner Coastal Plain streams in North Carolina. Six sites with stream catchments of similar size (1.19‐3.46 km2) within the Tar River Basin were selected across an urban land use gradient, as quantified by a range of catchment total impervious area (TIA; 3.8‐36.7%). Stream stage and ground‐water levels within three floodplain monitoring wells were measured manually and using pressure transducers from May 2006‐June 2007. Channel incision ratio (CIR), the ratio of bank height to bankfull height, was also measured at each monitoring site and along stream reaches within the study area (12 urban and 12 rural sites). Riparian ground‐water levels were inversely related to catchment TIA (%). As TIA (%) and stormwater runoff increased, the degree of stream channel incision increased and riparian ground‐water tables declined. In urban floodplains (>15% TIA), the median ground‐water level was 0.84 m deeper than for the rural settings (<15% TIA). This has resulted in a shift to drier conditions in the urban riparian zones, particularly during the summer months. CIR was found to be a reliable surface indicator of “riparian hydrologic drought” in these settings.  相似文献   

18.
Riprap, consisting of large boulders or concrete blocks, is extensively used to stabilize streambanks and to inhibit lateral erosion of rivers, yet its effect on river morphology and its ecological consequences have been relatively little studied. In this paper, we review the available information, most of it culled from the “grey” literature. We use a simple one‐dimensional morphodynamic model as a conceptual tool to illustrate potential morphological effects of riprap placement in a gravel‐bed river, which include inhibition of local sediment supply to the channel and consequent channel bed scour and substrate coarsening, and downstream erosion. Riprap placement also tends to sever organic material input from the riparian zone, with loss of shade, wood input, and input of finer organic material. Available information on the consequences for the aquatic ecosystem mainly concerns effects on commercially and recreationally important fishes. The preponderance of studies report unfavorable effects on local numbers, but habitat niches created by openings in riprap can favorably affect invertebrates and some small fishes. There is a need for much more research on both morphological and ecosystem effects of riprap placement.  相似文献   

19.
Abstract: Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land‐use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest region of southeastern Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un‐mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds, and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds were analyzed using Monte Carlo mass balance un‐mixing and it was found that: δ15N showed the ability to differentiate streambank erosion and surface soil erosion; and δ13C showed the ability to differentiate soil organic matter and geogenic organic matter. Results from the analyses suggest that streambank erosion downstream of surface coal mining sites is an especially significant source of sediment in coal mining disturbed watersheds. Further, the results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes. The dual‐isotope technique provides a useful method for further investigation of the impact of surface coal mining in the uplands of the watershed upon the geomorphologic state of the channel and the source of organic matter in aquatic systems impacted by surface coal mining.  相似文献   

20.
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号