首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brockman, Ruth R., Carmen T. Agouridis, Stephen R. Workman, Lindell E. Ormsbee, and Alex W. Fogle, 2012. Bankfull Regional Curves for the Inner and Outer Bluegrass Regions of Kentucky. Journal of the American Water Resources Association (JAWRA) 48(2): 391‐406. DOI: 10.1111/j.1752‐1688.2011.00621.x Abstract: Bankfull regional curves that relate channel dimensions and discharge to watershed drainage area are useful tools for assisting in the correct identification of bankfull elevation and in stream restoration and reconstruction. This study assessed 28 stable streams located in two physiographic regions of Kentucky: the Inner Bluegrass and the Outer Bluegrass. Bankfull channel dimensions, discharge, and return period as well as average channel slope, median bed material size, sinuosity, Rosgen stream classification, and percent impervious area were determined. Significant relationships were found between drainage area and the bankfull characteristics of cross‐sectional area, width, mean depth, and discharge for both the Inner Bluegrass and Outer Bluegrass regions (α = 0.05). It was also found that the percent impervious area in a watershed had minimal effect on bankfull dimensions, which is attributed to the well‐vegetated nature of the streambanks, cohesive streambank materials, and bedrock control. No significant differences between any of the Inner Bluegrass and Outer Bluegrass regional curves were found (α = 0.05). Comparisons were made between the Inner Bluegrass and Outer Bluegrass curves and others developed in karst‐influenced areas in the Eastern United States. Although few significant differences were found between the regional curves for bankfull discharge and width, a number of the curves differed with regards to bankfull cross‐sectional area and mean depth.  相似文献   

2.
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions.  相似文献   

3.
Abstract: Evaluating the relative amounts of water moving through the different components of the hydrological cycle is required for precise management and planning of water resources. An important aspect of this evaluation is the partitioning of streamflow into surface (quick flow) and base‐flow components. A prior study evaluated 40 different approaches for hydrograph‐partitioning on a field scale watershed in the Coastal Plain of the Southeastern United States and concluded that the Boughton’s method produced the most consistent and accurate results. However, its accuracy depends upon the proper estimation of: (1) the end of surface runoff, and (2) the fraction factor (α) that is function of many physical and hydrologic characteristics of a watershed. Proper identification of the end of surface runoff was accomplished by using a second derivative approach. Applying this approach to 12 years of separately measured surface and subsurface flow data from a field scale watershed (study area) proved to be accurate for 87% of the time. Estimation of the α value was accomplished in this study using two steps: (1) alpha was fitted to individual hydrographs: and, (2) a regression equation that determines these alpha values based on climatological factors (e.g., rainfall, evapotranspiration) was developed. Using these strategies improved the streamflow partitioning method’s performance significantly.  相似文献   

4.
This study uses data from 46 riparian sites to examine the influence of landscape hydrogeology on patterns of groundwater flux and the buffer width required for effective nitrate removal in humid temperate agricultural regions. There is a considerable imbalance in the research focus on different hydrogeologic settings. More than 40% of the buffers are located in landscapes with surficial sand aquifers, whereas few buffers have been studied in glacial till and weathered bedrock landscapes which cover large areas. Annual groundwater fluxes for 29 of these sites ranged from <20 L/m/day for buffers on flat sand plains and uplands with fine‐textured deposits to 50‐1,200 L/m/day for many sites with upland sand aquifers. Despite a similar range of water fluxes, buffers in gently to moderately sloping landscapes with <4 m depths of sand sediments reached a 90% removal efficiency within 30‐60 m while sites with >4 m depths required a 150‐200 m width. The width for 90% efficiency in buffers with loamy sand and sandy loam sediments also increased from 10‐20 m with <4 m sediment depths to 50‐100 m for >4 m depths. Limited data for buffers with fine‐textured sediments suggest that 90% of the nitrate flux was often depleted in a 10‐20 m width. Groundwater flux did not have a significant relationship with nitrate removal percent per meter buffer width because of the variation in efficiency that occurred in buffers with similar fluxes in different hydrogeologic settings.  相似文献   

5.
Opperman, Jeffrey J., Ryan Luster, Bruce A. McKenney, Michael Roberts, and Amanda Wrona Meadows, 2010. Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale. Journal of the American Water Resources Association (JAWRA) 46(2):211-226. DOI: 10.1111/j.1752-1688.2010.00426.x Abstract: This paper proposes a conceptual model that captures key attributes of ecologically functional floodplains, encompassing three basic elements: (1) hydrologic connectivity between the river and the floodplain, (2) a variable hydrograph that reflects seasonal precipitation patterns and retains a range of both high and low flow events, and (3) sufficient spatial scale to encompass dynamic processes and for floodplain benefits to accrue to a meaningful level. Although floodplains support high levels of biodiversity and some of the most productive ecosystems on Earth, they are also among the most converted and threatened ecosystems and therefore have recently become the focus of conservation and restoration programs across the United States and globally. These efforts seek to conserve or restore complex, highly variable ecosystems and often must simultaneously address both land and water management. Thus, such efforts must overcome considerable scientific, technical, and socioeconomic challenges. In addition to proposing a scientific conceptual model, this paper also includes three case studies that illustrate methods for addressing these technical and socioeconomic challenges within projects that seek to promote ecologically functional floodplains through river-floodplain reconnection and/or restoration of key components of hydrological variability.  相似文献   

6.
Abstract: Nonpoint source pollution, which contributes to contamination of surface waters, is difficult to control. Some pollutants, particularly nitrate (), are predominantly transmitted through ground water. Riparian buffer zones have the potential to remove contaminants from ground water and reduce the amount of that enters surface water. This is a justification for setting aside vegetated buffer strips along waterways. Many riparian zone hydrologic models assume uniform ground‐water flow through organic‐rich soil under reducing conditions, leading to effective removal of ground‐water prior to discharge into a stream. However, in a small first‐order stream in the mid‐Atlantic coastal plain, base‐flow generation was highly variable (spatially and temporally). Average base‐flow loads were greater in winter than summer, and higher during a wetter year than in dryer years. Specific sections of the stream consistently received greater amounts of high ground water than others. Areas within the riparian zone responsible for most of the exported from the watershed are termed “critical areas.” Over this 5‐year study, most of the exported during base flow originated from a critical area comprising less than 10% of the total riparian zone land area. Allocation of resources to address and improve mitigation function in critical areas should be a priority for continued riparian zone research.  相似文献   

7.
Vegetation in subalpine meadows in the Sierra Nevada Mountains is particularly vulnerable to lowering of groundwater levels because wet meadow vegetation is reliant upon shallow groundwater during the dry summer growing season. These ecosystems are especially vulnerable to channel incision as meadow aquifers are hydrologically connected to tributaries, and many have not yet recovered from previous anthropogenic influences. While instream restoration projects have become a common approach, lack of postrestoration monitoring and communication often result in a trial‐and‐error approach. In this study we demonstrate that preimplementation modeling of possible instream restoration solutions, chosen to raise stream stage and subsequently groundwater levels, is a useful tool for evaluating and comparing potential channel modifications. Modeling allows us to identify strategic locations and specific methods. Results show additional sediment depth and roughness on tributaries along with introduced woody debris (simulated by high roughness) on the Tuolumne River are the most effective means of raising stream stage. Results demonstrate that restoration efforts are most efficient in tributary streams. Managers and planners can more efficiently direct resources while minimizing the potential for negative impacts or failed restoration projects by modeling the possible effects of multiple restoration scenarios before implementation.  相似文献   

8.
Mittman, Tamara, Lawrence E. Band, Taehee Hwang, and Monica Lipscomb Smith, 2012. Distributed Hydrologic Modeling in the Suburban Landscape: Assessing Parameter Transferability from Gauged Reference Catchments. Journal of the American Water Resources Association (JAWRA) 48(3): 546-557. DOI: 10.1111/j.1752-1688.2011.00636.x Abstract: Distributed, process-based models of catchment hydrologic response are potentially useful tools for the assessment of Low Impact Development (LID) techniques in urbanized catchments. Their application is often limited, however, by the lack of continuous streamflow records to calibrate poorly constrained parameters. This article examines the transferability of soil and groundwater parameters from a forested reference catchment to a nearby suburban catchment. We use the Regional Hydro-Ecologic Simulation System (RHESSys) to develop hydrologic models of one gauged forested and one ungauged suburban catchment within the Baltimore Ecosystem Study (BES) study area. We use a parameter uncertainty framework to calibrate soil and groundwater parameters for the forested catchment, and discrete measurements of streamflow from the suburban catchment to assess parameter transferability. Results indicate that the transfer of soil and groundwater parameters from forested reference to nearby suburban catchments is viable, with performance measures for the suburban catchment often exceeding those for the forested catchment. We propose that the simplification of hydrologic processes in urbanized catchments may account for the increase in model performance in the suburban catchment.  相似文献   

9.
An approach for assessing the potential ecologic response of groundwater‐dependent riparian vegetation to flow alteration is developed, focusing on change to groundwater. Groundwater requirements for riparian vegetation are reviewed in conjunction with flow alteration statistics. Where flow alteration coincides with groundwater‐related vegetation sensitivities, scenarios are developed for groundwater simulation. Groundwater depths and recession rates in the riparian zone are simulated for baseline and altered stream hydrographs, with changes to river stage and width represented with a transient, flow‐dependent boundary condition. Potential flow diversion from the Upper Gila River in New Mexico is examined. Statistical flow alteration analysis, applying prospective diversions to a 76‐year record of daily flow, shows that flows in the winter‐spring months and within the high‐pulse to small flood range are subject to greatest potential change. Groundwater simulation scenarios are developed for these flow conditions in representative dry, near‐average, and wet years. Differences in groundwater elevations, generally less than 0.25 m during the flow alteration period, dissipate rapidly following cessation of diversion. Relating groundwater depth, recession rates and range of fluctuations to riparian vegetation needs, we find adverse ecological response is not expected from groundwater impacts for the flow alteration examined.  相似文献   

10.
Andrews, Danielle M., Christopher D. Barton, Randall K. Kolka, Charles C. Rhoades, and Adam J. Dattilo, 2011. Soil and Water Characteristics in Restored Canebrake and Forest Riparian Zones. Journal of the American Water Resources Association (JAWRA) 47(4):772‐784. DOI: 10.1111/j.1752‐1688.2011.00555.x Abstract: The degradation of streams has been widespread in the United States. In Kentucky, for instance, almost all of its large streams have been impounded or channelized. A restoration project was initiated in a channelized section of Wilson Creek (Nelson Co., Kentucky) to return its predisturbance meandering configuration. A goal of the project was to restore the native riparian corridor with giant cane and bottomland forest species. The objective of this study was to evaluate the use of giant cane in riparian restoration and to compare water quality and soil attributes between restored cane and forested communities. Comparison of data to replicated sites of similar size in undisturbed upstream areas (control) was also examined to evaluate restoration success. Vegetation establishment was initially hindered by frequent flooding in 2004, but mean survival was good after two growing seasons with rates of 80 and 61% for forest and cane plots, respectively. Results showed an improvement in stream water quality due to restoration activities. Significant differences between the cane and forested plots in shallow groundwater dissolved oxygen, NO3?‐N, NH4+‐N, and Mn concentrations suggest that soil redox conditions were not similar between the two vegetation types. Retention and transformation of carbon (C) and nitrogen (N) within the restored riparian system also differed by vegetation treatment; however, both communities appeared to be advancing toward conditions exhibited in the control section of Wilson Creek.  相似文献   

11.
Abstract: In 2006, we collected flow, sediment, and phosphorus (P) data at stream locations upstream and downstream of a small degraded wetland in south‐central Wisconsin traversed by a stream draining a predominantly agricultural watershed. The amount of sediment that left the wetland in the two largest storms, which accounted for 96% of the exported sediment during the observation period, was twice the amount that entered the wetland, even though only 50% of the wetland had been inundated. This apparently anomalous result is due to erosion of sediment that had accumulated in the low‐gradient channel and to the role of drainage ditches, which trapped sediment during the wetland‐filling phase. In the case of total P, the inflow to the wetland approximately equaled the outflow, although the wetland sequestered 30% of the incoming dissolved reactive P. The discrepancy is almost certainly due to net export of sediment. Many wetlands in the glaciated midwestern United States are ditched and traversed by low‐gradient channels draining predominantly agricultural areas, so the processes observed in this wetland are likely to be common in that region. Knowledge of this behavior presents opportunities to improve water quality in this and similar regions.  相似文献   

12.
Abstract: Land use in a watershed is commonly held to exert a strong influence on trunk channel form and process. Land use changes act over human time‐scales, which are short enough to measure effects on channels directly using historic aerial photographs. We show that high‐resolution topographic surveys for the channels of paired watersheds in the Lehigh Valley, Pennsylvania, are comparable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in most aspects except in their respective amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony Creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data, in concert with other recent hydrologic data from the watersheds suggest that the increase in urban area‐generated peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river esthetics.  相似文献   

13.
Riparian seeps have been recognized for their contributions to stream flow in headwater catchments, but there is limited data on how seeps affect stream water quality. The objective of this study was to examine the effect of seeps on the variability of stream NO3‐N concentrations in FD36 and RS, two agricultural catchments in Pennsylvania. Stream samples were collected at 10‐m intervals over reaches of 550 (FD36) and 490 m (RS) on 21 occasions between April 2009 and January 2012. Semi‐variogram analysis was used to quantify longitudinal patterns in stream NO3‐N concentration. Seep water was collected at 14 sites in FD36 and 7 in RS, but the number of flowing seeps depended on antecedent conditions. Seep NO3‐N concentrations were variable (0.1‐29.5 mg/l) and were often greater downslope of cropped fields compared to other land uses. During base flow, longitudinal variability in stream NO3‐N concentrations increased as the number of flowing seeps increased. The influence of seeps on the variability of stream NO3‐N concentrations was less during storm flow compared to the variability of base flow NO3‐N concentrations. However, 24 h after a storm in FD36, an increase in the number of flowing seeps and decreasing streamflow resulted in the greatest longitudinal variability in stream NO3‐N concentrations recorded. Results indicate seeps are important areas of NO3‐N delivery to streams where targeted adoption of mitigation measures may substantially improve stream water quality.  相似文献   

14.
Poff, Boris, Karen A. Koestner, Daniel G. Neary, and Victoria Henderson, 2011. Threats to Riparian Ecosystems in Western North America: An Analysis of Existing Literature. Journal of the American Water Resources Association (JAWRA) 47(6):1241–1254. DOI: 10.1111/j.1752‐1688.2011.00571.x Abstract: A total of 453 journal articles, reports, books, and book chapters addressing threats to riparian ecosystems in western North America were analyzed to identify, quantify, and qualify the major threats to these ecosystems as represented in the existing literature. Publications were identified either as research, policy, literature review, historical comparison, or management papers. All papers were evaluated based on year of publication, area of interest, and type(s) of threats addressed. Research papers, however, were assessed in more depth. The publications ranged from the 1930s to 2010 and addressed the following threats: dams, pollution (point and nonpoint), grazing, land use change, timber harvesting, water diversion, road construction, recreation, mining, groundwater pumping, invasive species, climate change, salinity, fire, insect and diseases, woody encroachment, watershed degradation, elimination of native vegetation, beavers, fire suppression, and fuel management. While the types of threats vary on spatial and temporal scales, some persist through decades in western North America. This analysis shows that grazing has been perceived as a dominant threat since the 1980s, but has been diminishing in the past decade, while invasive species, dams and, in recent years, climate change are increasingly represented in the literature as threats to riparian ecosystems in western North America.  相似文献   

15.
Abstract: Groundwater transport often complicates understanding of surface‐water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late‐winter or spring base‐flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base‐flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base‐flow flux of alachlor and metolachlor is <3% of the total base‐flow flux of those compounds plus degradates. Base‐flow flux of nitrate and herbicides as a percentage of applications is typically highest in well‐drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base‐flow nitrate flux represents 70% of total nitrogen flux in headwater streams.  相似文献   

16.
Abstract: This study evaluates the effects of urban land use on stream channels and riparian ground‐water levels along low‐order Inner Coastal Plain streams in North Carolina. Six sites with stream catchments of similar size (1.19‐3.46 km2) within the Tar River Basin were selected across an urban land use gradient, as quantified by a range of catchment total impervious area (TIA; 3.8‐36.7%). Stream stage and ground‐water levels within three floodplain monitoring wells were measured manually and using pressure transducers from May 2006‐June 2007. Channel incision ratio (CIR), the ratio of bank height to bankfull height, was also measured at each monitoring site and along stream reaches within the study area (12 urban and 12 rural sites). Riparian ground‐water levels were inversely related to catchment TIA (%). As TIA (%) and stormwater runoff increased, the degree of stream channel incision increased and riparian ground‐water tables declined. In urban floodplains (>15% TIA), the median ground‐water level was 0.84 m deeper than for the rural settings (<15% TIA). This has resulted in a shift to drier conditions in the urban riparian zones, particularly during the summer months. CIR was found to be a reliable surface indicator of “riparian hydrologic drought” in these settings.  相似文献   

17.
18.
Hathaway, Deborah L., 2011. Transboundary Groundwater Policy: Developing Approaches in the Western and Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(1):103‐113. DOI: 10.1111/j.1752‐1688.2010.00494.x Abstract: The western and southwestern United States include dozens of groundwater basins that cross political boundaries. Common among these shared groundwater basins is an overlay of differing legal structures and water development priorities, typically, with insufficient water supply for competing human uses, and often, a degraded ecosystem. Resolution of conflicts over ambiguously regulated groundwater has clarified transboundary groundwater policy in some interstate basins, while transboundary groundwater policy in international basins is less evolved. This paper identifies and contrasts approaches to transboundary groundwater policy, drawing from recent conflicts and cooperative efforts, including those associated with the interstate compacts on the Arkansas and Pecos Rivers; the Hueco and Lower Rio Grande Basins shared by New Mexico, Texas, and Mexico; and the Mexicali Basin in California and Mexico. Some efforts seek to fit groundwater policy into existing surface water allocation procedures; some strive for a better fit – incorporating scientific understanding of key differences between groundwater and surface water into policy frameworks. In some cases, neither policy nor precedent exists. The collective experience of these and other cases sets the stage for improved management of transboundary groundwater; as such, challenges and successes of these approaches, and those contemplated in several hypothetical model agreements, are examined.  相似文献   

19.
Abstract: We compared summer stream temperature patterns in 40 small forested watersheds in the Hoh and Clearwater basins in the western Olympic Peninsula, Washington, to examine correlations between previous riparian and basin‐wide timber harvest activity and stream temperatures. Seven watersheds were unharvested, while the remaining 33 had between 25% and 100% of the total basin harvested, mostly within the last 40 years. Mean daily maximum temperatures were significantly different between the harvested and unharvested basins, averaging 14.5°C and 12.1°C, respectively. Diurnal fluctuations between harvested and unharvested basins were also significantly different, averaging 1.7°C and 0.9°C, respectively. Total basin harvest was correlated with average daily maximum temperature (r2 = 0.39), as was total riparian harvest (r2 = 0.32). The amount of recently clear‐cut riparian forest (<20 year) within 600 m upstream of our monitoring sites ranged from 0% to 100% and was not correlated to increased stream temperatures. We used Akaike’s Information Criteria (AIC) analysis to assess whether other physical variables could explain some of the observed variation in stream temperature. We found that variables related to elevation, slope, aspect, and geology explain between 5% and 14% more of the variability relative to the variability explained by percent of basin harvested (BasHarv), and that the BasHarv was consistently a better predictor than the amount of riparian forest harvested. While the BasHarv is in all of the models that perform well, the AIC analysis shows that there are many models with two variables that perform about the same and therefore it would be difficult to choose one as the best model. We conclude that adding additional variables to the model does not change the basic findings that there is a relatively strong relationship between maximum daily stream temperatures and the total amount of harvest in a basin, and strong, but slightly weaker relationship between maximum daily stream temperatures and the total riparian harvest in a basin. Seventeen of the 40 streams exceeded the Washington State Department of Ecology’s (DOE) temperature criterion for waters defined as “core salmon and trout habitat” (class AA waters). The DOE temperature criterion for class AA waters is any seven‐day average of daily maximum temperatures in excess of 16°C. The probability of a stream exceeding the water quality standard increased with timber harvest activity. All unharvested sites and five of six sites that had 25‐50% harvest met DOEs water quality standard. In contrast, only nine of eighteen sites with 50‐75% harvest and two of nine sites with >75% harvest met DOEs water quality standard. Many streams with extensive canopy closure, as estimated by the age of riparian trees, still had higher temperatures and greater diurnal fluctuations than the unharvested basins. This suggests that the impact of past forest harvest activities on stream temperatures cannot be entirely mitigated through the reestablishment of riparian buffers.  相似文献   

20.
Abstract: Identifying relationships between landscape hydrogeological setting, riparian hydrological functioning and riparian zone sensitivity to climate and water quality changes is critical in order to best use riparian zones as best management practices in the future. In this study, we investigate water table dynamics, water flow path and the relative importance of precipitation, deep ground water (DG) and seep water as sources of water to a riparian zone in a deeply incised glacial till valley of the Midwest. Data indicate that water table fluctuations are strongly influenced by soil texture and to a lesser extent by upland sediment stratigraphy producing seeps near the slope bottom. The occurrence of till in the upland and at 1.7‐2 m in the riparian zone contributes to maintaining flow parallel to the ground surface at this site. Lateral ground‐water fluxes at this site with a steep topography in the upland (16%) and loam soil near the slope bottom are small (<10 l/d/m stream length) and intermittent. A shift in flow path from a lateral direction to a down valley direction is observed in the summer despite the steep concave topography and the occurrence of seeps at the slope bottom. Principal component and discriminant analysis indicate that riparian water is most similar to seep water throughout the year and that DG originating from imbedded sand and gravel layers in the lower till unit is not a major source of water to riparian zones in this setting. Water quality data and the dependence of the riparian zone for recharge on seep water suggest that sites in this setting may be highly sensitive to changes in precipitation and water quality in the upland in the future. A conceptual framework describing the hydrological functioning of riparian zones on this setting is presented to generalize the finding of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号