首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Lutz-Carrillo, Dijar J., Gregory M. Southard, and Loraine T. Fries, 2010. Global Genetic Relationships Among Isolates of Golden Alga (Prymnesium parvum). Journal of the American Water Resources Association (JAWRA) 46(1):24-32. DOI: 10.1111/j.1752-1688.2009.00388.x Abstract: Prymnesium parvum is considered among the most harmful algal species in the world for finfish and other gill breathing organisms. Although it is globally distributed, with the exception of Antarctica, P. parvum is usually associated with coastal and brackish waters. Historically, P. parvum incidents were recorded in the eastern hemisphere; however, in 1985 it was detected in inland Texas waters. We used DNA sequence variation of the first internal transcribed spacer in the nuclear ribosomal operon (ITS1) among multiple samples of P. parvum from Texas and other locales to address the possible origins of P. parvum in Texas and the United States (U.S.). With the exception of a sample from Diversion Lake, other samples from Texas, South Carolina, and Wyoming exhibited limited genetic variation and were similar in sequence to a sample from Scotland. The Diversion Lake sample was similar in sequence to samples from Denmark and Norway, and the Maine sample was highly similar to samples from England. These results suggest multiple independent introductions of P. parvum to the U.S.  相似文献   

2.
Lindehoff, Elin, Edna Granéli, and Patricia M. Glibert, 2010. Influence of Prey and Nutritional Status on the Rate of Nitrogen Uptake by Prymnesium parvum (Haptophyte). Journal of the American Water Resources Association (JAWRA) 46(1):121-132. DOI: 10.1111/j.1752-1688.2009.00396.x Abstract: We studied how the specific nitrogen (N) uptake rates of nitrate (NO3), urea, and the amino acids, glutamic acid and glycine, by Prymnesium parvum were affected by (1) the change from N-deficient status to N-sufficient status of the P. parvum cells, (2) presence of prey from a natural Baltic Sea plankton community, and (3) the composition of prey as affected by additions of terrestrial originated dissolved organic matter (DOM) or inorganic nutrients. Nitrogen-deficient P. parvum (16 μM NO3 and 4 μM PO4, molar N:P ratio of 4:1) were mixed with a natural Baltic plankton community and given PO43− and (1) NO3 (control) or (2) high molecular weight DOM, >1 kDa concentrated from sewage effluent (+DOM), in a molar N:P ratio of 9-10:1. With additions of 15N-enriched substrates, rates of N uptake from NO3, urea, and the amino acids glycine and glutamic acid were measured every 24 h for 72 h. Initial N-deficient P. parvum were highly toxic (3.7 ± 0.9 × 10−4 mg Sap equiv/cell) and toxic allelochemicals were released into the medium causing the natural plankton community to lyse. Rates of N uptake differed between the “control” and the “+DOM” treatments over time; total (sum of the N substrates measured) absolute uptake rates (ρcell, fmol N/cell/h) at ambient culture conditions were significantly higher (ANOVA, p < 0.05) in the more toxic “control” treatments compared with the “+DOM” treatments after 48 h. In the “control” treatment, the total ρcell increased significantly (ANOVA, p < 0.01) from time 0 to 48 h, while in the “+DOM” treatment there was no significant increase. Released organic nutrients from the lysed plankton cells may have increased uptake rates of amino acids and urea by P. parvum. All uptake rates declined in all treatments by 72 h. Total dissolved N uptake rates at ambient culture conditions were estimated to make up about 10% of the N P. parvum are potentially capable of ingesting from particulate prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号