首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: The Edwards Aquifer is one of the most studied and most prolific aquifers in the United States. The aquifer is a heavily fractured and faulted carbonate aquifer with transmissivities in excess of 100 ft2/s. The City of San Antonio relies upon the Edwards Aquifer as its sole source for water. Much work has been done on quantifying recharge to the aquifer and discharge from wells and acquiring aquifer characteristics from pumping tests, specific capacity tests, and geophysical logs. Although the aquifer has been well studied in Bexar County, much less is known about the Edwards Aquifer in Kinney County. This is partly due to the lower population within the county (approximately 3,500 people) relative to the eastern counties (Uvalde, Medina, Bexar, Comal, and Hays) and the great distance of Kinney County from high profile discharge areas such as the City of San Antonio and Comal and San Marcos Springs. Three key products resulted from this study: (1) exploratory well drilling and the largest aquifer test in the county that were conducted to evaluate the well yields within a 10,000 acre study area in which a drawdown of 2.5 ft approximately 1.2 miles away was observed while pumping at approximately 4,600 gpm; (2) a recharge estimate for the Edwards Aquifer within Kinney County of approximately 71,382 ac‐ft/yr; and (3) locating the Brackettville Groundwater Divide from an evaluation of ground water flow direction and hydrograph analysis. These results help evaluate the complex hydraulics occurring within Kinney County and aid in development of ground water modeling that will be used in managing the Edwards Aquifer.  相似文献   

2.
ABSTRACT: Recharge is an important parameter for models that simulate water and contaminant transport in unconfined aquifers. Unfortunately, measurements of actual recharge are not usually available causing recharge to be estimated or possibly added to the calibration procedure. In this study, differences between observed water-table elevations and water-table elevations simulated with a model based on the one-dimensional Boussinesq equation were used to identify both the timing and quantity of recharge to an alluvial valley aquifer. Observed water table elevations and river stage data were recorded during a five-year period from 1991 to 1995 at the Ohio Management Systems Evaluation Area located in south-central Ohio. Direct recharge attributed to overbank flow during and shortly after flood conditions accounted for 65 percent of the total recharge computed during the five-year study period. Recharge of excess infiltration to the aquifer was intermittent and occurred soon after large rainfall events and high river stage. Specification of constant recharge with time values in ground-water simulation models seems inappropriate for stream-aquifer systems given the strong influence of the river on water table elevations in these systems.  相似文献   

3.
Mittelstet, Aaron R., Michael D. Smolen, Garey A. Fox, and Damian C. Adams, 2011. Comparison of Aquifer Sustainability Under Groundwater Administrations in Oklahoma and Texas. Journal of the American Water Resources Association (JAWRA) 1‐8. DOI: 10.1111/j.1752‐1688.2011.00524.x Abstract: We compared two approaches to administration of groundwater law on a hydrologic model of the North Canadian River, an alluvial aquifer in northwestern Oklahoma. Oklahoma limits pumping rates to retain 50% aquifer saturated thickness after 20 years of groundwater use. The Texas Panhandle Groundwater Conservation District’s (GCD) rules limit pumping to a rate that consumes no more than 50% of saturated thickness in 50 years, with reevaluation and readjustment of permits every 5 years. Using a hydrologic model (MODFLOW), we simulated river‐groundwater interaction and aquifer dynamics under increasing levels of “development” (i.e., increasing groundwater withdrawals). Oklahoma’s approach initially would limit groundwater extraction more than the GCD approach, but the GCD approach would be more protective in the long run. Under Oklahoma rules more than half of aquifer storage would be depleted when development reaches 65%. Reevaluation of permits under the Texas Panhandle GCD approach would severely limit pumping as the 50% level is approached. Both Oklahoma and Texas Panhandle GCD approaches would deplete alluvial base flow at approximately 10% development. Results suggest periodic review of permits could protect aquifer storage and river base flow. Modeling total aquifer storage is more sensitive to recharge rate and aquifer hydraulic conductivity than to specific yield, while river leakage is most sensitive to aquifer hydraulic conductivity followed by specific yield.  相似文献   

4.
The traditional concept of Aquifer Storage and Recovery (ASR) has been emphasized and extensively applied for water resources conservation in arid and semi-arid regions using groundwater systems as introduced in Pyne's book titled Groundwater Recharge and Wells. This paper extends the ASR concept to an integrated level in which either treated or untreated surface water or reclaimed wastewater is stored in a suitable aquifer through a system of spreading basins, infiltration galleries and recharge wells; and part or all of the stored water is recovered through production wells, dual function recharge wells, or by streams receiving increased discharge from the surrounding recharged aquifer as needed. In this paper, the author uses the El Paso Water Utilities (EPWU) ASR system for injection of reclaimed wastewater into the Hueco Bolson aquifer as an example to address challenges and resolutions faced during the design and operation of an ASR system under a new ASR system definition. This new ASR system concept consists of four subsystems: source water, storage space-aquifer, recharge facilities and recovery facilities. Even though facing challenges, this system has successfully recharged approximately 74.7 million cubic meters (19.7 billion gallons) of reclaimed wastewater into the Hueco Bolson aquifer through 10 recharge wells in the last 18 years. This ASR system has served dual purposes: reuse of reclaimed wastewater to preserve native groundwater, and restoration of groundwater by artificial recharge of reclaimed wastewater into the Hueco Bolson aquifer.  相似文献   

5.
Assessing groundwater resources in the arid and semiarid borderlands of the United States and Mexico represents a challenge for land and water managers, particularly in the Transboundary Santa Cruz Aquifer (TSCA). Population growth, residential construction, and industrial activities have increased groundwater demand in the TSCA, in addition to wastewater treatment and sanitation demands. These activities, coupled with climate variability, influence the hydrology of the TSCA and emphasize the need for groundwater assessment tools for decision‐making purposes. This study assesses the impacts of changes in groundwater demand, effluent discharge, and climate uncertainties within the TSCA from downstream of the Nogales International Wastewater Treatment Plant to the northern boundary of the Santa Cruz Active Management Area. We use a conceptual water budget model to analyze the long‐term impact of the different components of potential recharge and water losses within the aquifer. Modeling results project a future that ranges from severe long‐term drying to positive wetting. This research improves the understanding of the impact of natural and anthropogenic variables on water sustainability, with an accessible methodology that can be globally applied.  相似文献   

6.
ABSTRACT: Although evidence of modern recharge in the North African and Arabian sedimentary basin aquifers exists, it is difficult to determine the volume of recharge. Also, from the evidence of regional groundwater gradients, the flow within the aquifers seems to be appreciably greater than one would intuitively expect. A hypotehtical model embodying the characteristics of the aquifers has been used to investigate the likely significance of various possible flow mechanisms. It is shown that while dewatering in the unconfined area can possibly contribute to flows for a considerable period of time, the maintenance of water levels in the unconfined zone must be the result of modern recharge. It is also shown that recharge depths of less than 10 mm per annum are sufficient given suitable aquifer parameters. Results for various combinations of aquifer parameters and configurations are given, including layered aquifers and the effects of restricted oufflows. Comparisons are made using a “bench mark” example. The work indicates that there is little point in carrying out conventional hydrological balance studies in hyper-arid areas and that, instead, more emphasis should be placed upon good groundwater hydrographic data and modeling.  相似文献   

7.
ABSTRACT: Toxic organic compounds, such as DBCP, EDB, and c TCP, that are associated with pineapple cultivation in Hawaii have been discovered in drinking water wells on Oahu. In order to reach and contaminate the Pearl Harbor aquifer, pesticides must be transported quickly downward away from the soil surface prior to complete volatilization, degradation, or adsorption of residuals. This paper assesses the role of pesticide application timing relative to subsequent rainfall-induced recharge events in determining the amount and extent of chemical leaching from the soil. A water balance model for a pineapple crop is developed to estimate the time series of recharge from two fields for which soil contamination profiles are available. In general, the amounts of DBCP, EDB, and TCP found in the soil profiles of the two fields are consistent with expectations of leaching based on an analysis of the recharge time series. The results indicate that recharge during and immediately following the application of pesticides is important in determining whether groundwater contamination will result.  相似文献   

8.
ABSTRACT: Declining ground-water levels and spring discharges have heightened water user concerns about the sustainability of the Snake River Plain aquifer in southern Idaho. Diminished recharge from surface water irrigation and increased irrigation pumping have been depleting the aquifer at a rate of about 350,000 acre-feet/year. Previously, aquifer conditions were treated as an uncontrollable consequence of weather and development activities. With increasing competition for available water, the State appears to be progressing through a three-stage process of recharge management. The first stage is that which has occurred historically, where recharge is largely an incidental effect of surface water irrigation. The second stage is the implementation of intentional recharge with little regard to identifying or maximizing benefits. Idaho has been at this stage for the past few years. The State is entering a third stage in which recharge sites will be located and designed to meet specific water user and environmental objectives. Preliminary estimates using numerical and analytical models demonstrate that managed recharge within a few miles of the river will result in short-term increases in spring discharge. More distant recharge sites are needed to provide longer-term benefits. The primary challenge facing implementation of the managed recharge program will be the balancing of economic and environmental costs and benefits and to whom they accrue.  相似文献   

9.
10.
Abstract: One of the largest karst springs in North China, the Jinci Springs, dried up and has remained dry since 1994. We develop a correlation analysis with time‐lag and a regression analysis with time‐lag to study the relation between spring flow and precipitation. This allows us to obtain a better understanding of karst hydrological processes by differentiating the contribution of variation in precipitation from anthropogenic impacts on the dry‐up of Jinci Springs. We divided the karstic hydrological processes into two phases: pre‐1961 and post‐1961. In the first phase (i.e., 1954‐1960) the groundwater recharge was affected by precipitation alone, and in the second phase (i.e., 1961‐1994) the groundwater recharge was influenced by both precipitation and human activities. Using precipitation and groundwater recharge data in the first phase, we set up a groundwater recharge model with time‐lags. By running the time‐lags model, we acquired the groundwater recharge likely to occur under the sole effect of precipitation in the second phase. Using a water‐balance calculation, we conclude that the groundwater recharge exhibited statistical stationarity, and the Jinci Springs dry‐up was the result of anthropogenic activities. At least three specific types of anthropogenic activities contributed to the drying‐up of Jinci Springs: (1) groundwater pumping accounts for 51%, (2) the dewatering from coal mining accounts for 33%, (3) and dam‐building 14%. The drying‐up of Jinci Springs meant that the groundwater drained from the aquifer’s fractures, and subsequently changed the structure of the karst aquifer. Although groundwater exploitation has been reduced, the flow at Jinci Springs has not reoccurred.  相似文献   

11.
ABSTRACT: The fresh-salt water interface in artesian aquifers has been investigated by various techniques on the basis of its analogy to the free surface in earth dams or cores of dams. Although various approximations are used, some more or less exact solutions exist. One of the simple methods, that would appeal to practical workers, was developed by the analysis of hydraulic forces. However, this method has not been checked thoroughly due to the lack of wide ranges of coverage by the more or less exact solutions. In this paper a suggested finite element method is used for the purpose of comparing with the method of hydraulic forces. The presented procedure eliminates some of the difficulties and uncertainties in current finite element procedures. Both methods proved to be in close agreement. Moreover, the hydraulic heads along the upper boundary of the artesian aquifer were found to be in close agreement with Dupuit's equation. The results of this investigation would greatly simplify the more complex management problems when the effects of discharge and/or recharge wells are added to the natural flow effects.  相似文献   

12.
ABSTRACT: The Floridan Aquifer is the primary source of water in the coastal area of Santa Rosa County, Florida. In order to optimize well field design and analyze aquifer stress problems, the USGS MODFLOW code (McDonald and Harbaugh, 1988) is applied to develop a numerical computer model of the aquifer. The Geographical Information System (GIS) is the primary tool used in the development of the model grid, performance of the modeling procedure, and model analysis. The GIS is used in generating multiple grids in which to simulate both regional scale and local scale flow. The grid topology is recorded in geographic coordinates which facilitates geo-referencing and orientation of the grid to base maps and data coyerages. The GIS allows data transfer from various coverages to the nodes of the block centered grid where hydrogeologic information is stored as attributes to the grid coverage. From this grid coverage, pertinent information is queried within the GIS environment and used to generate the input files for the MODFLOW simulation. After MODFLOW execution, simulated heads and drawdown are imported into the grid coverage where residual error and recharge rates can be calculated. Contoured surfaces are then created for selected data sets including simulated heads, drawdown, residual error, and recharge rates. Model calibration is conducted utilizing the GIS to generate and process data sets associated with model simulations.  相似文献   

13.
Abstract: Analysis of results from an electrical resistivity survey, a magnetic survey, and an aquifer test performed on the Leona River floodplain in south‐central Texas indicates that ground‐water discharge from the Edwards Aquifer through the Leona River floodplain may be as great as 91.7 Mm3/year. When combined with an estimate of 8.8 Mm3/year for surface flow in the Leona River, as much as 100.5 Mm3/year could be discharged from the Edwards Aquifer through the Leona River floodplain. A value of 11,200 acre‐ft/year (13.82 Mm3/year) has been used as the calibration target in existing ground‐water models for total discharge from Leona Springs and the Leona River. Including ground water or underflow discharge would significantly increase the calibration target in future models. This refinement would improve the conceptualization of ground‐water flow in the western portion of the San Antonio segment of the Edwards Aquifer and would thereby allow for more accurate assessment and management of the ground‐water resources provided by the Edwards Aquifer.  相似文献   

14.
ABSTRACT: The Dakota aquifer, composed of the Dakota Sandstone and stratigraphically equivalent sandstone units of Cretaceous age, is the upper-most regional aquifer underlying the extensively developed High Plains aquifer of the midwestern United States. The concentration of dissolved solids in ground water of the Dakota aquifer ranges from less than 500 milligrams per liter in calcium bicarbonate type water in the eastern outcrop area to more than 100,000 milligrams per liter in sodium chloride type oilfield brine in the Denver Basin to the west. Preliminary maps showing the distribution of dissolved solids confirm the complex nature of the Dakota aquifer as inferred from stratigraphic and hydraulic evidence. Extensive vertical leakage through confining layers, local recharge at the truncated eastern boundary, and a barrier to recharge along the western edge of the Denver Basin are consistent with the distribution of hydraulic head and dissolved solids.  相似文献   

15.
ABSTRACT: Unsustainable withdrawals from regional aquifers have resulted in adverse impacts considerable distances from the point locations of supply wells. In one area of the southeastern (SE) Coastal Plain, conservative estimates for repair/replacement of some residential wells damaged or destroyed by unsustainable yield from the Floridan aquifer system exceeded $4 million. However, a comprehensive assessment of damage/economic loss to private property and public resources due to unsustainable yield from that regional karst aquifer has not been made. Uncalculated direct costs to home‐owners from damage attributed to those withdrawals are associated with destruction of homes from increased sinkhole formation, devalued waterfront property, and removal of diseased and dead trees. Examples of other uncalculated economic burdens resulting from unsustainable aquifer yield in the SE Coastal Plain include: (1) irreversible damage to the aquifer matrix and concomitant increased potential for groundwater contamination, (2) large‐scale wildfires with subsequent degradation of air quality, debilitation of transportation corridors, and destruction of timber, wildlife habitat and property, and (3) destruction of “protected” natural areas. This paper provides a general background of the regional Floridan aquifer system's karst characteristics, examples of known impacts resulting from ground water mining in the SE Coastal Plain, and examples of additional damage that may be related to unsustainable yield from the Upper Floridan aquifer. Costs of these impacts have not been calculated and are not reflected in the price users pay for ground water. Evidence suggests that the classic watershed management approach must be revised in areas with mined regional karst aquifers to include impacts of induced recharge from the surficial aquifer, and subsurface inter‐basin flow. Likewise, associated impacts to surface water and interrelated systems must be calculated. The true cost of groundwater mining to this and future generations should be determined using a multidisciplinary approach.  相似文献   

16.
The Ogallala Aquifer is depleting faster than it is being replenished. Interpretation of well data suggests that the water table in some counties is not declining, or not as much as might be expected in view of the amount of land being irrigated. As the Ogallala Aquifer in the Texas Panhandle receives almost no recharge, a possible explanation is that the current method of using well data for estimating the quantity of water remaining in the aquifer is underestimating water in storage. This study used an agronomic water mass balance approach to estimate how much water has been used for irrigation compared to amounts estimated by well data. The major finding was in counties where irrigation well capacities have declined significantly but irrigation is continuing, there is likely more water in storage than presently estimated, but the amounts of water being used for irrigation in those counties are greater than estimated changes of water in storage. The proposed hypothesis for this difference is there are mounds of water between wells that are not being accounted for and data are presented and discussed to support this conjecture.  相似文献   

17.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   

18.
Johnson, R.L., B.R. Clark, M.K. Landon, L.J. Kauffman, and S.M. Eberts, 2011. Modeling the Potential Impact of Seasonal and Inactive Multi‐Aquifer Wells on Contaminant Movement to Public Water‐Supply Wells. Journal of the American Water Resources Association (JAWRA) 47(3):588‐596. DOI: 10.1111/j.1752‐1688.2011.00526.x Abstract: Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi‐aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi‐aquifer well is more than a kilometer from the PWS well. The contribution from multi‐aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi‐aquifer well from an unconfined aquifer to a confined aquifer even when those multi‐aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi‐aquifer wells can increase the vulnerability of a confined‐aquifer PWS well.  相似文献   

19.
ABSTRACT: Changes in irrigation and land use may impact discharge of the Snake River Plain aquifer, which is a major contributor to flow of the Snake River in southern Idaho. The Snake River Basin planning and management model (SRBM) has been expanded to include the spatial distribution and temporal attenuation that occurs as aquifer stresses propagate through the aquifer to the river. The SRBM is a network flow model in which aquifer characteristics have been introduced through a matrix of response functions. The response functions were determined by independently simulating the effect of a unit stress in each cell of a finite difference groundwater flow model on six reaches of the Snake River. Cells were aggregated into 20 aquifer zones and average response functions for each river reach were included in the SRBM. This approach links many of the capabilities of surface and ground water flow models. Evaluation of an artificial recharge scenario approximately reproduced estimates made by direct simulation in a ground water flow model. The example demonstrated that the method can produce reasonable results but interpretation of the results can be biased if the simulation period is not of adequate duration.  相似文献   

20.
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号