共查询到2条相似文献,搜索用时 0 毫秒
1.
Leslie Schwierzke Daniel L. Roelke Bryan W. Brooks James P. Grover Theodore W. Valenti Jr. Mieke Lahousse Carrie J. Miller James L. Pinckney 《Journal of the American Water Resources Association》2010,46(1):63-75
Schwierzke, Leslie, Daniel L. Roelke, Bryan W. Brooks, James P. Grover, Theodore W. Valenti, Jr., Mieke Lahousse, Carrie J. Miller, and James L. Pinckney, 2010. Prymnesium parvum Population Dynamics During Bloom Development: A Role Assessment of Grazers and Virus. Journal of the American Water Resources Association (JAWRA) 46(1):63-75. DOI: 10.1111/j.1752-1688.2009.00391.x Abstract: The toxic haptophyte Prymnesium parvum is a harmful alga known to cause fish-killing blooms that occur worldwide. In Texas (United States), P. parvum blooms occur in inland brackish water bodies and have increased in frequency and magnitude in recent years. In this study we conducted three consecutive field experiments (Lake Whitney) to investigate the influence of zooplankton and viruses on P. parvum bloom dynamics during the time of year when blooms are still typically active in Texas (early spring). A localized P. parvum bloom developed during our study that involved increasing levels of toxicity (based on Pimephales promelas and Daphnia magna bioassays). Only in our last experiment, during later stages of bloom development and under highly toxic conditions, did the presence of grazers show a statistically significant, negative effect on P. parvum population dynamics. During this experiment, a rotifer-dominated zooplankton community emerged, composed mostly of Notholca laurentiae, suggesting that this species was less sensitive than other grazers to toxins produced by P. parvum. Microzooplankton may have also been important at this time. Similarly, only our final experiment demonstrated a statistically significant, negative effect of viruses on P. parvum. This exploratory study, resulting in observed impacts on P. parvum populations by both grazers and virus, enhances our understanding of P. parvum ecology and highlights direction for future studies on resistance of zooplankton to prymnesin toxins and algal-virus interactions. 相似文献
2.
James P. Grover Jason W. Baker Daniel L. Roelke Bryan W. Brooks 《Journal of the American Water Resources Association》2010,46(1):92-107
Grover, James P., Jason W. Baker, Daniel L. Roelke, and Bryan W. Brooks, 2010. Current Status of Mathematical Models for Population Dynamics of Prymnesium parvum in a Texas Reservoir. Journal of the American Water Resources Association (JAWRA) 46(1):92-107. DOI: 10.1111/j.1752-1688.2009.00393.x Abstract: Blooms of the harmful alga Prymnesium parvum have apparently increased in frequency in inland waters of the United States, especially in western Texas. A suite of mathematical models was developed based on a chemostat (or continuously stirred tank reactor) framework, and calibrated with data from Lake Granbury, Texas. Inputs included data on flows, salinity, irradiance, temperature, zooplankton grazing, and nutrients. Parameterization incorporated recent laboratory studies relating the specific growth rate of P. parvum to such factors. Models differed in the number of algal populations competing with P. parvum, and whether competition occurred only by consumption of shared nutrients, or additionally through production of an allelopathic chemical by one of the populations, parameterized as cyanobacteria. Uncalibrated models did not reproduce the observed seasonal dynamics of P. parvum in Lake Granbury, which displayed a maximum population in late February during a prolonged bloom in cooler weather, and reduced abundance in summer. Sensitivity analyses suggested two modifications leading to predictions that better resembled observations. The first modification greatly reduces the optimal temperature for growth of P. parvum, an approach that disagrees with laboratory experiments indicating a strong potential for growth at temperatures above 20°C. The second modification increases the growth rate of P. parvum at all temperatures, in models including cyanobacterial allelopathy. Despite these adjustments, calibrated models did not faithfully simulate all features of the seasonal dynamics of P. parvum. 相似文献