共查询到15条相似文献,搜索用时 0 毫秒
1.
J. Denis Newbold Susan Herbert Bernard W. Sweeney Paul Kiry Stephen J. Alberts 《Journal of the American Water Resources Association》2010,46(2):299-310
Newbold, J. Denis, Susan Herbert, Bernard W. Sweeney, Paul Kiry, and Stephen J. Alberts, 2010. Water Quality Functions of a 15-Year-Old Riparian Forest Buffer System. Journal of the American Water Resources Association (JAWRA) 46(2):299-310. DOI: 10.1111/j.1752-1688.2010.00421.x Abstract: We monitored long-term water quality responses to the implementation of a three-zone Riparian Forest Buffer System (RFBS) in southeastern Pennsylvania. The RFBS, established in 1992 in a 15-ha agricultural (row crop) watershed, consists of: Zone 1, a streamside strip (∼10 m wide) of permanent woody vegetation for stream habitat protection; Zone 2, an 18- to 20-m-wide strip reforested in hardwoods upslope from Zone 2; and Zone 3, a 6- to 10-m-wide grass filter strip in which a level lip spreader was constructed. The monitoring design used paired watersheds supplemented by mass balance estimates of nutrient and sediment removal within the treated watershed. Tree growth was initially delayed by drought and deer damage, but increased after more aggressive deer protection (1.5 m polypropylene shelters or wire mesh protectors) was instituted. Basal tree area increased ∼20-fold between 1998 and 2006, and canopy cover reached 59% in 2006. For streamwater nitrate, the paired watershed comparison was complicated by variations in both the reference stream concentrations and in upslope groundwater nitrate concentrations, but did show that streamwater nitrate concentrations in the RFBS watershed declined relative to the reference stream from 2002 through the end of the study in early 2007. A subsurface nitrate budget yielded an average nitrate removal by the RFBS of 90 kg/ha/year, or 26% of upslope subsurface inputs, for the years 1997 through 2006. There was no evidence from the paired watershed comparison that the RFBS affected streamwater phosphorus concentration. However, groundwater phosphorus did decline within the buffer. Overland flow sampling of 23 storms between 1997 and 2006 showed that total suspended solids concentration in water exiting the RFBS to the stream was on average 43% lower than in water entering the RFBS from the tilled field. Particulate phosphorus concentration was lower by 22%, but this removal was balanced by a 26% increase in soluble reactive phosphorus so that there was no net effect on total phosphorus. 相似文献
2.
Gary K. Speiran 《Journal of the American Water Resources Association》2010,46(2):246-260
Speiran, Gary K., 2010. Effects of Groundwater-Flow Paths on Nitrate Concentrations Across Two Riparian Forest Corridors. Journal of the American Water Resources Association (JAWRA) 46(2):246-260. DOI: 10.1111/j.1752-1688.2010.00427.x Abstract: Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/l beneath fields to 2 mg/l beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/l to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations. 相似文献
3.
Matthew P. Miller Paul D. Capel Ana María García Scott W. Ator 《Journal of the American Water Resources Association》2020,56(1):100-112
In response to concerns regarding the health of streams and receiving waters, the United States Environmental Protection Agency established a total maximum daily load for nitrogen in the Chesapeake Bay watershed for which practices must be in place by 2025 resulting in an expected 25% reduction in load from 2009 levels. The response of total nitrogen (TN) loads delivered to the Bay to nine source reduction and land use change scenarios was estimated using a Spatially Referenced Regression on Watershed Attributes model. The largest predicted reduction in TN load delivered to the Bay was associated with a scenario in which the mass of TN as fertilizer applied to agricultural lands was decreased. A 25% decrease in the mass of TN applied as fertilizer resulted in a predicted reduction in TN loading to the Bay of 11.3%, which was 2.5–5 times greater than the reductions predicted by other scenarios. Eliminating fertilizer application to all agricultural land in the watershed resulted in a predicted reduction in TN load to the Bay of 45%. It was estimated that an approximate 25% reduction in TN loading to the Bay could be achieved by eliminating fertilizer applied to the 7% of subwatersheds contributing the greatest fertilizer‐sourced TN loads to the Bay. These results indicate that management strategies aimed at decreasing loading from a small number of subwatersheds may be effective for reducing TN loads to the Bay, and similar analyses are possible in other watersheds. 相似文献
4.
Michael M. Pollock Timothy J. Beechie Martin Liermann Richard E. Bigley 《Journal of the American Water Resources Association》2009,45(1):141-156
Abstract: We compared summer stream temperature patterns in 40 small forested watersheds in the Hoh and Clearwater basins in the western Olympic Peninsula, Washington, to examine correlations between previous riparian and basin‐wide timber harvest activity and stream temperatures. Seven watersheds were unharvested, while the remaining 33 had between 25% and 100% of the total basin harvested, mostly within the last 40 years. Mean daily maximum temperatures were significantly different between the harvested and unharvested basins, averaging 14.5°C and 12.1°C, respectively. Diurnal fluctuations between harvested and unharvested basins were also significantly different, averaging 1.7°C and 0.9°C, respectively. Total basin harvest was correlated with average daily maximum temperature (r2 = 0.39), as was total riparian harvest (r2 = 0.32). The amount of recently clear‐cut riparian forest (<20 year) within 600 m upstream of our monitoring sites ranged from 0% to 100% and was not correlated to increased stream temperatures. We used Akaike’s Information Criteria (AIC) analysis to assess whether other physical variables could explain some of the observed variation in stream temperature. We found that variables related to elevation, slope, aspect, and geology explain between 5% and 14% more of the variability relative to the variability explained by percent of basin harvested (BasHarv), and that the BasHarv was consistently a better predictor than the amount of riparian forest harvested. While the BasHarv is in all of the models that perform well, the AIC analysis shows that there are many models with two variables that perform about the same and therefore it would be difficult to choose one as the best model. We conclude that adding additional variables to the model does not change the basic findings that there is a relatively strong relationship between maximum daily stream temperatures and the total amount of harvest in a basin, and strong, but slightly weaker relationship between maximum daily stream temperatures and the total riparian harvest in a basin. Seventeen of the 40 streams exceeded the Washington State Department of Ecology’s (DOE) temperature criterion for waters defined as “core salmon and trout habitat” (class AA waters). The DOE temperature criterion for class AA waters is any seven‐day average of daily maximum temperatures in excess of 16°C. The probability of a stream exceeding the water quality standard increased with timber harvest activity. All unharvested sites and five of six sites that had 25‐50% harvest met DOEs water quality standard. In contrast, only nine of eighteen sites with 50‐75% harvest and two of nine sites with >75% harvest met DOEs water quality standard. Many streams with extensive canopy closure, as estimated by the age of riparian trees, still had higher temperatures and greater diurnal fluctuations than the unharvested basins. This suggests that the impact of past forest harvest activities on stream temperatures cannot be entirely mitigated through the reestablishment of riparian buffers. 相似文献
5.
Cropland Riparian Buffers throughout Chesapeake Bay Watershed: Spatial Patterns and Effects on Nitrate Loads Delivered to Streams 总被引:1,自引:0,他引:1
Donald E. Weller Matthew E. Baker 《Journal of the American Water Resources Association》2014,50(3):696-712
We used statistical models to provide the first empirical estimates of riparian buffer effects on the cropland nitrate load to streams throughout the Chesapeake Bay watershed. For each of 1,964 subbasins, we quantified the 1990 prevalence of cropland and riparian buffers. Cropland was considered buffered if the topographic flow path connecting it to a stream traversed a streamside forest or wetland. We applied a model that predicts stream nitrate concentration based on physiographic province and the watershed proportions of unbuffered and buffered cropland. We used another model to predict annual streamflow based on precipitation and temperature, and then multiplied the predicted flows and concentrations to estimate 1990 annual nitrate loads. Across the entire Chesapeake watershed, croplands released 92.3 Gg of nitrate nitrogen, but 19.8 Gg of that was removed by riparian buffers. At most, 29.4 Gg more might have been removed if buffer gaps were restored so that all cropland was buffered. The other 43.1 Gg of cropland load cannot be addressed with riparian buffers. The Coastal Plain physiographic province provided 52% of the existing buffer reduction of Bay‐wide nitrate loads and 36% of potential additional removal from buffer restoration in cropland buffer gaps. Existing and restorable nitrate removal in buffers were lower in the other three major provinces because of less cropland, lower buffer prevalence, and lower average buffer nitrate removal efficiency. 相似文献
6.
Joseph P. Herring Richard C. Schultz Thomas M. Isenhart 《Journal of the American Water Resources Association》2006,42(1):145-155
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed. 相似文献
7.
Richard J. Horwitz Thomas E. Johnson Paul F. Overbeck T. Kevin O’Donnell W. Cully Hession Bernard W. Sweeney 《Journal of the American Water Resources Association》2008,44(3):724-741
Abstract: The joint influences of riparian vegetation and urbanization on fish assemblages were analyzed by depletion sampling in paired forested and nonforested reaches of 25 small streams along an urbanization gradient. Nonforested reaches were narrower than their forested counterparts, so densities based on surface area differ from linear densities (based on reach length). Linear densities (based on number or biomass of fish) of American eel, white sucker and tesselated darter, and the proportion of biomass of benthic invertivores were significantly higher in nonforested reaches, while linear densities of margined madtom and the number of pool species were significantly higher in forested reaches. Observed riparian effects may reflect differences in habitat and algal productivity between forested and nonforested reaches. These results suggest that relatively small‐scale riparian restoration projects can affect local geomorphology and the abundance of fish. Dense vegetative cover in riparian zones and similar or analogous habitats in both forested and nonforested reaches, the relatively small scale of the nonforested reaches, and the low statistical power to detect differences in abundance of rare species may have limited the observed differences between forested and nonforested reaches. There was a strong urbanization gradient, with reductions of intolerant species and increases of tolerant species and omnivores with increasing urbanization. Interactions between riparian vegetation type and urbanization were found for blacknose dace, creek chub, tesselated darter, and the proportion of biomass of lithophilic spawners. The study did not provide consistent support for the hypotheses that responses of fish to riparian vegetation would be overwhelmed by urban degradation or insignificant at low urbanization. 相似文献
8.
Theodore A. Endreny Peter Kwon Tanja N. Williamson Richard Evans 《Journal of the American Water Resources Association》2019,55(5):1268-1287
We examined the impacts of changes in land cover and soil conditions on the flow regime of the upper Delaware River Basin using the Water Availability Tool for Environmental Resources. We simulated flows for two periods, c. 1600 and 1940, at three sites using the same temperature and precipitation conditions: the East Branch, West Branch, and mainstem Delaware River at Callicoon, New York. The 1600 period represented pristine forest and soils. The 1940 period included reduced forest cover, increased agriculture, and degraded soils with reduced soil macropore fractions. A model‐sensitivity test examined the impact of soil macropore and land cover change separately. We assessed changes in flow regimes between the 1600 and 1940 periods using a variety of flow statistics, including established ecological limits of hydrologic alteration (ELOHA) thresholds. Reduced forest soil macropore fraction significantly reduced summer and fall baseflows. The 1940 period had significantly lower Q50 flows (50% exceedance) than the 1600 period, as well as summer and fall Q90 and Q75–Q90 flows below the ELOHA thresholds. The one‐ to seven‐day minimum flows were also lower for the 1940 period, by 17% on the mainstem. 1940 flows were 6% more likely than the 1600 period to fall below the low‐flow threshold for federally endangered dwarf wedgemussel (Alasmidonta heterodon) habitat. In contrast, the 1940 period had higher flows than the 1600 period from late fall to early winter. 相似文献
9.
Keith E. Schilling Thomas M. Isenhart Jason A. Palmer Calvin F. Wolter Jean Spooner 《Journal of the American Water Resources Association》2011,47(4):672-686
Schilling, Keith E., Thomas M. Isenhart, Jason A. Palmer, Calvin F. Wolter, and Jean Spooner, 2011. Impacts of Land‐Cover Change on Suspended Sediment Transport in Two Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 47(4):672‐686. DOI: 10.1111/j.1752‐1688.2011.00533.x Abstract: Suspended sediment is a major water quality problem, yet few monitoring studies have been of sufficient scale and duration to assess the effectiveness of land‐use change or conservation practice implementation at a watershed scale. Daily discharge and suspended sediment export from two 5,000‐ha watersheds in central Iowa were monitored over a 10‐year period (water years 1996‐2005). In Walnut Creek watershed, a large portion of land was converted from row crop to native prairie, whereas in Squaw Creek land use remained predominantly row crop agriculture. Suspended sediment loads were similar in both watersheds, exhibiting flashy behavior typical of incised channels. Modeling suggested that expected total soil erosion in Walnut Creek should have been reduced 46% relative to Squaw Creek due to changes in land use, yet measured suspended sediment loads showed no significant differences. Stream mapping indicated that Walnut Creek had three times more eroding streambank lengths than did Squaw Creek suggesting that streambank erosion dominated sediment sources in Walnut Creek and sheet and rill sources dominated sediment sources in Squaw Creek. Our results demonstrate that an accounting of all sources of sediment erosion and delivery is needed to characterize sediment reductions in watershed projects combined with long‐term, intensive monitoring and modeling to account for possible lag times in the manifestation of the benefits of conservation practices on water quality. 相似文献
10.
洞庭湖土地利用/覆被变化及洪涝灾害研究进展 总被引:1,自引:0,他引:1
洞庭湖是长江流域重要的调蓄滞洪区、物种基因库和商品粮基地,具有重要的战略地位。然而由于人类不合理的开发利用致使湖泊功能和效益不断下降。系统认识洞庭湖自然、社会经济属性,揭示其内在的演变规律,有助于洞庭湖区资源的合理配置、环境保护和经济的可持续发展。本文从土地利用/覆被变化、洪涝灾害等方面,综述了洞庭湖的研究进展。研究结果表明目前对洞庭湖研究的深度和广度均不够,洞庭湖作为通江湖泊的复杂性和不确定性、研究思路方法创新意识不够、基础数据难以获得、洞庭湖区血吸虫病害严重等是洞庭湖研究难以深入的主要原因。最后从洞庭湖流域土地利用/覆被变化及其水文效应与调控研究、洞庭湖区洪灾风险评价与区划研究两个方面展望了今后研究的重点。 相似文献
11.
Land Use and Land Cover Change Analysis and Prediction in the Upper Reaches of the Minjiang River,China 总被引:1,自引:1,他引:1
Scientists have aimed at exploring land use and land cover change (LUCC) and modeling future landscape pattern in order to
improve our understanding of the causes and consequences of these phenomena. This study addresses LUCC in the upper reaches
of Minjiang River, China, from 1974 to 2000. Based on remotely sensed images, LUCC and landscape pattern change were assessed
using cross-tabulation and landscape metrics. Then, using the CLUE-S model, changes in area of four types of land cover were
predicted for two scenarios considering forest polices over the next 20 years. Results showed that forestland decreased from
1974 to 2000 due to continuous deforestation, while grassland and shrubland increased correspondingly. At the same time, the
farmland and settlement land increased dramatically. Landscape fragmentation in the study area accompanied these changes.
Forestland, grassland, and farmland take opposite trajectories in the two scenarios, as does landscape fragmentation. LUCC
has led to ecological consequences, such as biodiversity loss and lowering of ecological carrying capacity. 相似文献
12.
Regional and Temporal Differences in Nitrate Trends Discerned from Long‐Term Water Quality Monitoring Data 下载免费PDF全文
E.G. Stets V.J. Kelly C.G. Crawford 《Journal of the American Water Resources Association》2015,51(5):1394-1407
Riverine nitrate (NO3) is a well‐documented driver of eutrophication and hypoxia in coastal areas. The development of the elevated river NO3 concentration is linked to anthropogenic inputs from municipal, agricultural, and atmospheric sources. The intensity of these sources has varied regionally, through time, and in response to multiple causes such as economic drivers and policy responses. This study uses long‐term water quality, land use, and other ancillary data to further describe the evolution of river NO3 concentrations at 22 monitoring stations in the United States (U.S.). The stations were selected for long‐term data availability and to represent a range of climate and land‐use conditions. We examined NO3 at the monitoring stations, using a flow‐weighting scheme meant to account for interannual flow variability allowing greater focus on river chemical conditions. River NO3 concentration increased strongly during 1945‐1980 at most of the stations and have remained elevated, but stopped increasing during 1981‐2008. NO3 increased to a greater extent at monitoring stations in the Midwest U.S. and less so at those in the Eastern and Western U.S. We discuss 20th Century agricultural development in the U.S. and demonstrate that regional differences in NO3 concentration patterns were strongly related to an agricultural index developed using principal components analysis. This unique century‐scale dataset adds to our understanding of long‐term NO3 patterns in the U.S. 相似文献
13.
Mingliang Liu Hanqin Tian Guangsheng Chen Wei Ren Chi Zhang Jiyuan Liu 《Journal of the American Water Resources Association》2008,44(5):1193-1207
Abstract: China has experienced a rapid land‐use/cover change (LUCC) during the 20th Century, and this process is expected to continue in the future. How LUCC has affected water resources across China, however, remains uncertain due to the complexity of LUCC‐water interactions. In this study, we used an integrated Dynamic Land Ecosystem Model (DLEM) in conjunction with spatial data of LUCC to estimate the LUCC effects on the magnitude, spatial and temporal variations of evapotranspiration (ET), runoff, and water yield across China. Through comparisons of DLEM results with other model simulations, field observations, and river discharge data, we found that DLEM model can adequately catch the spatial and seasonal patterns of hydrological processes. Our simulation results demonstrate that LUCC led to substantial changes in ET, runoff, and water yield in most of the China’s river basins during the 20th Century. The temporal and spatial patterns varied significantly across China. The largest change occurred during the second half century when almost all of the river basins had a decreasing trend in ET and an increasing trend in water yield and runoff, in contrast to the inclinations of ET and declinations of water yield in major river basins, such as Pearl river basin, Yangtze river basin, and Yellow river basin during the first half century. The increased water yield and runoff indicated alleviated water deficiency in China in the late 20th Century, but the increased peak flow might make the runoff difficult to be held by reservoirs. The continuously increasing ET and decreasing water yield in Continental river basin, Southwest river basin, and Songhua and Liaohe river basin implied regional water deficiency. Our study in China indicates that deforestation averagely increased ET by 138 mm/year but decreased water yield by the same amount and that reforestation averagely decreased ET by 422 mm/year since most of deforested land was converted to paddy land or irrigated cropland. In China, cropland‐related land transformation is the dominant anthropogenic force affecting water resources during the 20th Century. On national average, cropland expansion was estimated to increase ET by 182 mm/year while cropland abandonment decreased ET by 379 mm/year. Our simulation results indicate that urban sprawl generally decreased ET and increased water yield. Cropland managements (fertilization and irrigation) significantly increased ET by 98 mm/year. To better understand LUCC effects on China’s water resources, it is needed to take into account the interactions of LUCC with other environmental changes such as climate and atmospheric composition. 相似文献
14.
M.H. Giacomoni R. Gomez E.Z. Berglund 《Journal of the American Water Resources Association》2014,50(5):1242-1256
Urbanization impacts the stormwater regime through increased runoff volumes and velocities. Detention ponds and low impact development (LID) strategies may be implemented to control stormwater runoff. Typically, mitigation strategies are designed to maintain postdevelopment peak flows at predevelopment levels for a set of design storms. Peak flow does not capture the extent of changes to the hydrologic flow regime, and the hydrologic footprint residence (HFR) was developed to calculate the area and duration of inundated land during a storm. This study couples a cellular automata land cover change model with a hydrologic and hydraulic framework to generate spatial projections of future development on the fringe of a rapidly urbanizing metropolitan area. The hydrologic flow regime is characterized for existing and projected land cover patterns under detention pond and LID‐based control, using the HFR and peak flow values. Results demonstrate that for less intense and frequent rainfall events, LID solutions are better with respect to HFR; for larger storms, detention pond strategies perform better with respect to HFR and peak flow. 相似文献
15.
Paul Ekness Timothy Randhir 《Journal of the American Water Resources Association》2007,43(6):1468-1482
Abstract: Spatio‐temporal linkages between hydrologic and ecologic dimensions of watersheds play a critical role in conservation policies. Habitat potential is influenced by variation along longitudinal and lateral gradients and land use disturbance. An assessment of these influences provides critical information for protecting watershed ecosystems and in making spatially explicit, conservation decisions. We use an ecohydrologic approach that focuses on interface between hydrological and ecological processes. This study focuses on changes in watershed habitat potentials along lateral (riparian), and longitudinal (stream order) dimensions and disturbance (land use). The habitat potentials were evaluated for amphibians, reptiles, mammals, and birds in the Westfield River Watershed of Massachusetts using geographic information systems and multivariate analysis. We use a polynomial model to study nonlinear effects using robust regression. Various spatial policies were modeled and evaluated for influence on species diversity. All habitat potentials showed a strong influence along spatial dimensions and disturbance. The habitat potential for all vertebrate groups studied decreased as the distance from the riparian zone increased. Headwaters and lower order subwatersheds had higher levels of species diversity compared to higher order subwatersheds. It was observed that locations with the least disturbance also had higher habitat potential. The study identifies three policy criteria that could be used to identify critical areas within a watershed to conserve habitat suitable for various species through management and restoration activities. A spatially variable policy that is based on stream order, riparian distance, and land use can be used to maximize watershed ecological benefits. Wider riparian zones with variable widths, protection of headwaters and lower order subwatersheds, and minimizing disturbance in riparian and headwater areas can be used in watershed policy. These management objectives could be achieved using targeted economic incentives, best management practices, zoning laws, and educational programs using a watershed perspective. 相似文献