共查询到20条相似文献,搜索用时 0 毫秒
1.
Mercedes G. Bermudez Wirawit Piyamongkol Susana Tomaz Evelyn Dudman Jon K. Sherlock Dagan Wells 《黑龙江环境通报》2003,23(8):669-677
There is increasing interest in the use of preimplantation genetic diagnosis (PGD) as an alternative to routine prenatal diagnosis. However, the costs associated with development and testing of new PGD protocols have forced some PGD centres to limit the number of diseases for which PGD is offered. One of the main factors in the design of new protocols, which affects cost and accuracy, is the choice of the mutation-detection technique. We have assessed the reliability of DNA sequencing and mini-sequencing for clinical diagnosis at the single-cell level and have found them to be rapid and accurate. Extensive optimisation for individual mutations is not usually necessary when employing these versatile techniques and consequently a smaller investment of time and resources should be required during development of new protocols. Additionally, we report single-cell protocols for the diagnoses of cystic fibrosis, sickle cell anaemia and β-thalassaemia, which utilise mini-sequencing. Unlike most mutation-detection techniques, mini-sequencing permits analysis of very small DNA fragments. Small amplicons experience low allele dropout (ADO) rates, and consequently this approach could potentially improve the reliability of PGD. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
2.
3.
The main difficulty in developing a molecular diagnosis of spinal muscular atrophy (SMA) resides in the specific genomic structure of the locus. Indeed, two highly homologous survival motor neurone genes, SMN1 and SMN2, are present at the locus. The detection of the homozygous deletion of exons 7 and 8 of the SMN1 gene, which is present in 90 to 98% of the patients, is based on methods highlighting 1 of the 8 nucleotidic mismatches existing between these 2 genes. In order to offer preimplantation genetic diagnosis (PGD) for SMA, we developed a new allele-specific amplification method. The main disadvantage of our previously described strategy resided in the possibility of diagnosing, in case of amplification failure, an unaffected embryo as affected. We present here a new PGD-SMA method. We established the conditions for three different duplex PCRs, allowing the specific detection of the SMN1 gene and one polymorphic marker, either D5S629, D5S1977, or D5S641. Of the 60 to 90 single cells tested, the PCR efficiency varied from 98 to 100% with a complete genotype obtained in a range between 81 and 87% with a global allele drop-out rate of 9%. Such a test was used to perform 1 PGD cycle for which 7 embryos could be analysed. All the embryos were fully diagnosed, six as unaffected and one as affected. Four embryos were transferred, but no pregnancy ensued. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
4.
Allele-specific amplification for preimplantation genetic diagnosis (PGD) of spinal muscular atrophy
Céline Moutou Nathalie Gardes Catherine Rongières Jeanine Ohl Karima Bettahar-Lebugle Christiane Wittemer Pierre Gerlinger Stéphane Viville 《黑龙江环境通报》2001,21(6):498-503
We have developed a new allele-specific amplification method for the preimplantation genetic diagnosis (PGD) of spinal muscular atrophy (SMA; Werdnig-Hoffmann disease) from a single cell. This method is based on the detection of the deletion of exon 7 of the telomeric copy of the survival motor neurone (SMNt) gene. An oligonucleotide was designed to be specific to the SMNt nucleotidic sequence with exonic mismatch G (for SMNt)→A (for SMNc) at its 3′ end. This test produces reliable PCR products in 95% of single lymphoblasts (85/88) tested as well as in 16/16 blastomeres from normal controls. Specificity analysis showed that we were able to detect homozygous deletion of the SMNt gene in 99% of single lymphoblasts (103/104) from a SMA patient. No contamination was detected in 68 blanks tested. Multiple cell and DNA dilution analysis revealed that the test is accurate and specific up to 100 pg DNA and should thus also be suitable for PGD at the blastocyst stage. This rapid procedure requires a single round of fluorescent PCR and no restriction digestion, while previously described single cell methods include nested PCR followed by restriction enzyme digestion. Two PGD cycles for SMA using this procedure were performed in our centre. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
5.
P. M. Abou-Sleiman A. Apessos J. C. Harper P. Serhal R. M. L. Winston J. D. A. Delhanty 《黑龙江环境通报》2002,22(6):519-524
Neurofibromatosis type 2 (NF2) is a dominantly inherited cancer predisposition syndrome that is caused bymutations in the NF2 gene. We report here the first clinical preimplantation genetic diagnosis (PGD) forNF2. A protocol was developed to simultaneously amplify the mutation and a single nucleotide polymorphism (SNP) located within the gene. The mutation and polymorphism were analysed by simultaneous fluorescent single-strand conformation polymorphism (SSCP) on an automated DNA sequencer. The mutation, carried by the male partner, was a single base pair substitution affecting a splice site in intron 4 of the gene. The female partner was infertile due to polycystic ovary syndrome and would require IVF to conceive. The couple was found to be informative at a linked intragenic SNP situated in the 5′ untranslated region of the gene. The SNP was included in the assay to reduce the risk of misdiagnosis due to allele dropout (ADO). The couple underwent three cycles of treatment during which a total of 43 blastomeres were biopsied from 31 embryos. Amplification at both loci was obtained in 35 cells (81%). A total of five embryos were transferred, two in the first cycle, two in the second and one in the third. No pregnancy ensued. The results of the diagnoses indicated that, in this couple, the inheritance of the mutation may be non-Mendelian. Out of a total of 32 embryos tested only four were found not to carry the mutation. The reasons for this apparent skew remain unknown. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
6.
Alan R. Thornhill John A. McGrath Robin A. J. Eady Peter R. Braude Alan H. Handyside 《黑龙江环境通报》2001,21(6):490-497
Single cell polymerase chain reaction (PCR) for preimplantation genetic diagnosis (PGD) requires high efficiency and accuracy. Allele dropout (ADO), the random amplification failure of one of the two parental alleles, remains the most significant problem in PCR-based PGD testing since it can result in serious misdiagnosis for compound heterozygous or autosomal dominant conditions. A number of different strategies (including the use of lysis buffers to break down the cell and make the DNA accessible) have been employed to combat ADO with varying degrees of success, yet there is still no consensus among PGD centres over which lysis buffer should be used (ESHRE PGD Consortium, 1999 ). To address this issue, PCR amplification of three genes (CFTR, LAMA3 and PKP1) at different chromosomal loci was investigated. Single lymphocytes from individuals heterozygous for mutations within each of the three genes were collected and lysed in either alkaline lysis buffer (ALB) or proteinase K/SDS lysis buffer (PK). PCR amplification efficiencies were comparable between alkaline lysis and proteinase K lysis for PCR products spanning each of the three mutated loci (ΔF508 in CFTR 90% vs 88%; R650X in LAMA3 82% vs 78%; and Y71X in PKP1 91% vs 87%). While there was no appreciable difference between ADO rates between the two lysis buffers for the LAMA3 PCR product (25% vs 26%), there were significant differences in ADO rates between ALB and PK for the CFTR PCR product (0% vs 23%) and the PKP1 PCR product (8% vs 56%). Based on these results, we are currently using ALB in preference to PK/SDS buffer for the lysis of cells in clinical PGD. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
7.
8.
Preimplantation genetic diagnosis (PGD) was developed more than a decade ago to offer an alternative to prenatal diagnosis for couples at risk of transmitting an inherited disease to their offspring. Portuguese-type familial amyloidotic polyneuropathy (FAP type I), is an autosomal dominant disease presenting an inherited mutation in the gene encoding the plasma protein transthyretin (TTR). We here report the first protocol for single-cell detection of the Met30 mutation in FAP type I and its application to PGD. A nested PCR reaction for exon 2 of the TTR gene was developed. The PCR product was then analysed by restriction enzyme analysis and SSCP allowing the detection of the point mutation. Ten clinical cycles were performed in seven couples. From the 93 metaphase II (MII) injected oocytes, 82 were normally fertilized and 78 were biopsied. A positive signal in the nested PCR reaction was obtained in 61 blastomeres, corresponding to a DNA amplification efficiency of 78.2%. No allele dropout (ADO) or contamination were detected. A biochemical pregnancy was obtained in three cases and a clinical pregnancy in one couple is actually in normal evolution. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
9.
10.
Joep P. M. Geraedts Joyce Harper Peter Braude Karen Sermon Anna Veiga Luca Gianaroli Noelle Agan Santiago Munné Sue Gitlin Elisabeth Blenow Kylie de Boer Nicole Hussey Emmanuel Kanavakis Soo-Huan Lee Stéphane Viville Lewis Krey Pierre Ray Serena Emiliani Yung Hsien Liu Stefan Vermeulen 《黑龙江环境通报》2001,21(12):1086-1092
An Erratum has been published for this article in Prenatal Diagnosis 22 (5) 2002, 451. Preimplantation genetic diagnosis (PGD) requires the combined efforts of geneticists and workers in the field of reproductive medicine. This was studied on the basis of a questionnaire, sent to 35 members of the PGD Consortium of the European Society of Human Reproduction and Embryology (ESHRE). A reply was obtained from 20 centres. They represent the majority of activities in the field of PGD in the world. It is obvious that many of the activities (in vitro fertilisation, embryo culture and biopsy) take place in IVF units while others (counselling and diagnosis) are the responsibility of genetic diagnostic centres. The distances between both units vary considerably. In all but one centre sex determination is offered. Aneuploidy screening is offered in 13 out of 20 centres. PGD of translocations and other structural chromosome abnormalities is offered in all but one centre. The number of monogenic diseases offered varies considerably. In comparison to prenatal diagnosis PGD is more expensive. The majority of these costs are due to the IVF or ICSI procedure. The charges for PGD vary between about € 600 and € 4000. In 16 out of 20 centres the parents to be must sign an informed consent form. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
11.
12.
13.
14.
15.
Preimplantation genetic diagnosis (PGD) is an alternative to prenatal diagnosis for couples at risk of transmitting genetic disorders to their offspring. We present a fluorescence in situ hybridization (FISH) analysis of embryos obtained after seven PGD cycles in six couples with Robertsonian translocations and male factor infertility: 4 der(13;14), 1 der(14;21) and 1 der(15;21). Of 74 metaphase II (MII) injected oocytes, 61 (82.4%) fertilized normally and cleaved. Of these, 37/61 (60.7%) embryos were of high morphological quality with ≥6 blastomeres. After biopsy of 44 embryos at day 3 of development, seven degenerated, seven arrested in development and 30/44 (68.2%) evolved, of which 25/30 (83.3%) reached the morula/blastocyst stage. Analysis of biopsied blastomeres showed 23/44 (52.3%) of normal/balanced embryos, of which 15 (11 at the morula/blastocyst stage) were transferred in six cycles. One term pregnancy was achieved, which ended by cesarean section at 37 weeks of gestation, giving birth to two healthy newborn. Analysis of 49 embryos (excluding 12 inconclusive cases) showed a predominance of alternate segregation (38/49, 77.6%) over adjacent segregation (7/49, 14.3%), with one (2%) being a polyploid mosaic and three (6.1%) chaotic. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
16.
17.
18.
Haemoglobinopathies including α- and β-thalassaemia are the world's most common class of single gene disorder. Prenatal diagnosis (PND) for β-thalassaemia has been proven to be an effective strategy for controlling the incidence of new cases and is widely used in several countries where the disease is common. Successful preimplantation genetic diagnosis (PGD) protocols for β-thalassaemia have been introduced using restriction fragment length polymorphism (RFLP), single-stranded conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE). However, contamination and allele dropout (ADO) remain an important concern for all of these strategies. In the present study two PGD protocols for detecting β-thalassaemia mutations (codon 41-42 and IVSI-110) and one for α-thalassaemia (SEA mutation) have been designed and tested. These methods contain failsafe mechanisms to reduce the risk of misdiagnosis due to ADO or contamination and utilise multiplex fluorescent PCR (F-PCR). Interestingly, amplification efficiency and ADO were significantly affected by the choice of DNA polymerase and the freshness of the single cells used. The close similarity between the DNA sequences of β-globin and δ-globin was also found to be an important issue that necessitated careful design of primers for the β-globin gene. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
19.
Preimplantation genetic diagnosis (PGD) is a technique used for determining the genetic status of a single cell biopsied from embryos or oocytes. Genetic analysis from a single cell is both rewarding and challenging, especially in PGD. The starting material is very limited and not replaceable, and the diagnosis has to be made in a very short time. Different whole genome amplification (WGA) techniques have been developed to specifically increase the DNA quantities originating from clinical samples with limited DNA contents. In this review, currently available WGA techniques are introduced and, among them, multiple displacement amplification (MDA) is discussed in detail. MDA generates abundant assay-ready DNA to perform broad panels of genetic assays through its ability to rapidly amplify genomes from single cells. The utilization of MDA for single-cell molecular analysis is expanding at a high rate, and MDA is expected to soon become an integral part of PGD. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献