首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low Impact Development (LID) is alternative design approach to land development that conserves and utilizes natural resources to minimize the potential negative environmental impacts of development, such as flooding. The Woodlands near Houston, Texas is one of the premier master‐planned communities in the United States. Unlike in a typical urban development where riparian corridors are often replaced with concrete channels, pervious surfaces, vegetation, and natural drainage pathways were preserved as much as possible during development. In addition, a number of detention ponds were strategically located to manage runoff on site. This article uses a unique distributed hydrologic model, Vflo?, combined with historical (1974) and recent (2008 and 2009) rainfall events to evaluate the long‐term effectiveness of The Woodlands natural drainage design as a stormwater management technique. This study analyzed the influence of LID in The Woodlands by comparing the hydrologic response of the watershed under undeveloped, developed, and highly urbanized conditions. The results show that The Woodlands drainage design successfully reflects predeveloped hydrologic conditions and produces peak flows two to three times lower than highly urbanized development. Furthermore, results indicate that the LID practices employed in The Woodlands successfully attenuate the peak flow from a 100‐year design event, resulting in flows comparable to undeveloped hydrologic conditions.  相似文献   

2.
Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.  相似文献   

3.
Urbanization impacts the stormwater regime through increased runoff volumes and velocities. Detention ponds and low impact development (LID) strategies may be implemented to control stormwater runoff. Typically, mitigation strategies are designed to maintain postdevelopment peak flows at predevelopment levels for a set of design storms. Peak flow does not capture the extent of changes to the hydrologic flow regime, and the hydrologic footprint residence (HFR) was developed to calculate the area and duration of inundated land during a storm. This study couples a cellular automata land cover change model with a hydrologic and hydraulic framework to generate spatial projections of future development on the fringe of a rapidly urbanizing metropolitan area. The hydrologic flow regime is characterized for existing and projected land cover patterns under detention pond and LID‐based control, using the HFR and peak flow values. Results demonstrate that for less intense and frequent rainfall events, LID solutions are better with respect to HFR; for larger storms, detention pond strategies perform better with respect to HFR and peak flow.  相似文献   

4.
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.  相似文献   

5.
Abstract: The quality and quantity of residential stormwater runoff from a control, traditional, and low impact development (LID) watershed were compared in a paired watershed study. A traditional neighborhood was built using typical subdivision standards while a LID design was constructed with best management practices including grass swales, cluster housing, shared driveways, rain gardens, and a narrower pervious concrete‐paver road. Weekly, flow‐weighted, composite samples of stormwater were analyzed for nitrate + nitrite‐nitrogen (NO3 + NO2‐N), ammonia‐nitrogen (NH3‐N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS). Monthly composite samples were analyzed for total copper (Cu), lead (Pb), and zinc (Zn). Mean weekly storm flow increased (600x) from the traditional watershed in the postconstruction period. Increased exports of TKN, NO3 + NO2‐N, NH3‐N, TP, Cu, Zn, and TSS in runoff were associated with the increased storm flow. Postconstruction storm flow in the LID watershed was reduced by 42% while peak discharge did not change from preconstruction conditions. Exports were reduced from the LID watershed for NH3‐N, TKN, Pb, and Zn, while TSS and TP exports increased.  相似文献   

6.
While most research about the relationship between land use and watershed hydrological output has focused primarily on land-use types and their impact on hydrological processes, the relationship between characteristics of land-use patterns (such as pattern fragmentation, connectivity, and coherence) and hydrological processes has not been well examined. Using historical stormwater data, this study evaluates the hydrological effects of different land-use scenarios in the Qing-shui watershed in Beijing, China, at a variety of spatial scales. This study demonstrates that planning and managing land-use patterns can significantly reduce runoff under different scales, particularly for small storm events. In contrast to other aspects of land-use structure characteristics, such as the shape complexity of land-use patches, fragmented level of the patches of land-use types appear as dominant drivers of runoff. The results of the study suggest that land-use pattern management should be an important component of Best Management Practices to reduce the impacts of urbanization on natural hydrological processes.  相似文献   

7.
The Storm Water Management Model was used to simulate runoff and nutrient export from a low impact development (LID) watershed and a watershed using traditional runoff controls. Predictions were compared to observed values. Uncalibrated simulations underpredicted weekly runoff volume and average peak flow rates from the multiple subcatchment LID watershed by over 80%; the single subcatchment traditional watershed had better predictions. Saturated hydraulic conductivity, Manning's n for swales, and initial soil moisture deficit were sensitive parameters. After calibration, prediction of total weekly runoff volume for the LID and traditional watersheds improved to within 12 and 5% of observed values, respectively. For the validation period, predicted total weekly runoff volumes for the LID and traditional watersheds were within 6 and 2% of observed values, respectively. Water quality simulation was less successful, Nash–Sutcliffe coefficients >0.5 for both calibration and validation periods were only achieved for prediction of total nitrogen export from the LID watershed. Simulation of a 100‐year, 24‐h storm resulted in a runoff coefficient of 0.46 for the LID watershed and 0.59 for the traditional watershed. Results suggest either calibration is needed to improve predictions for LID watersheds or expanded look‐up tables for Green–Ampt infiltration parameter values that account for compaction of urban soil and antecedent conditions are needed.  相似文献   

8.
Low impact development (LID) practices are often applied to compensate for surface imperviousness caused by urban development. These practices can mitigate flood risk by reducing runoff volume and peak flow and by delaying the time to peak flow. To select a suitable LID practice type and its surface area during the preliminary design process, it is necessary to rapidly estimate the hydrologic performance of various LID designs under design storms. This study provides a method and a toolbox for rapid assessment of the hydrologic performance of various LID practices, which can be useful to developers for establishment of preliminary LID designs. The hydrologic performance of three common types of LID practices (i.e., green roofs, bioretention cells, and infiltration trenches) under various design storms is first simulated using the Storm Water Management Model (SWMM). The results are then presented as performance curves on a unit storage basis. Look‐up tables are further developed to assist the comparison and selection of the LID alternatives for various hydrologic performance targets. To facilitate SWMM modeling, a MATLAB toolbox is developed to automate the process of input modification, model simulation, result extraction, and postprocessing. Finally, the sensitivity of the look‐up curves to design storm types and design specifications of bioretention cells is also analyzed, and the assumptions used in the development of these look‐up curves are validated.  相似文献   

9.
Stormwater infrastructure designers and operators rely heavily on the United States Environmental Protection Agency’s Storm Water Management Model (SWMM) to simulate stormwater and wastewater infrastructure performance. Since its inception in the late 1970s, improvements and extensions have been tested and evaluated rigorously to verify the accuracy of the model. As a continuation of this progress, the main objective of this study was to quantify how accurately SWMM simulates the hydrologic activity of low impact development (LID) storm control measures. Model performance was evaluated by quantitatively comparing empirical data to model results using a multievent, multiobjective calibration method. The calibration methodology utilized the PEST software, a Parameter ESTimation tool, to determine unmeasured hydrologic parameters for SWMM’s LID modules. The calibrated LID modules’ Nash–Sutcliffe efficiencies averaged 0.81; average percent bias (PBIAS) ?9%; average ratio of root mean square error to standard deviation of measured values 0.485; average index of agreement 0.94; and the average volume error, simulated vs. observed, was +9%. SWMM accurately predicted the timing of peak flows, but usually underestimated their magnitudes by 10%. The average volume reduction, measured outflow volume divided by inflow volume, was 48%. We had more difficulty in calibrating one study, an infiltration trench, which identified a significant limitation of the current version of the SWMM LID module; it cannot simulate lateral exfiltration of water out of the storage layers of a LID storm control measure. This limitation is especially severe for a deep LIDs, such as infiltration trenches. Nevertheless, SWMM satisfactorily simulated the hydrologic performance of eight of the nine LID practices.  相似文献   

10.
Changes in land use and extreme rainfall trends can lead to increased flood vulnerability in many parts of the world, especially for urbanized watersheds. This study investigates the performance of existing stormwater management strategies for the Upper Yahara watershed in Dane County, WI to determine whether they are adequate to protect urban and suburban development from an extreme rainfall. Using extreme storm transposition, we model the performance of the stormwater infiltration practices required for new development under current county ordinances. We find during extreme rainfall the volume of post‐development runoff from impervious surfaces from a typical site would increase by over 55% over pre‐development conditions. We recommend the ordinance be strengthened to reduce vulnerability to flooding from future urban expansion and the likely increase in the magnitude and frequency of extreme storms.  相似文献   

11.
The hydrologic and water quality benefits of an existing engineered stormwater control measures (SCMs) network, along with the alternative stormwater control simulations, were assessed in the rapidly urbanizing Beaverdam Creek watershed located in SE U.S. Piedmont region through the use of distributed Model of Urban Stormwater Improvement Conceptualization stormwater model. When compared with predevelopment conditions, the postdevelopment watershed simulation without SCMs indicated a 2 times increase in total runoff volume, 3 times average increase in peak flow for 1.5‐3.2 cm 6‐h storm events, and 30 times, 12 times, and 3 times higher total suspended solids (TSS), total phosphorous (TP), and total nitrogen (TN) loadings, respectively. The existing SCMs network, in comparison with the postdeveloped watershed without SCMs, reduced the average peak flow rates for 1.5‐3.2 cm 6‐h storm events by 70%, lowered the annual runoff volume by 3%, and lowered TSS, TP, TN annual loads by 57, 51, and 10%, respectively. A backyard rain garden simulation resulted in minimal additional reduction in TSS (1.6%), TP (0.4%), and TN (4%). Model simulations indicate that mandatory 85% TSS and 70% TP annual load reductions in comparison with the predevelopment levels would require the diversion of runoff from at least 70% of the contributing drainage areas runoff into additional offline bioretention basins.  相似文献   

12.
ABSTRACT: Pollutants entering a water system can be very destructive to the health of that system. Best Management Practices (BMPs) are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid in the decision‐making process of selecting the BMPs that are most effective in reducing the pollutant loading and are also the most cost effective. The Annualized Agricultural Nonpoint Source Pollution model (AnnAGNPS 2.0) is a technological tool that can be used to estimate watershed response to agricultural management practices. The main purpose of this paper is to test the performance of AnnAGNPS 2.0 on nitrogen loading using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. Previous work has demonstrated the capability of the model to simulate runoff and sediment. From sensitivity analyses in this study, initial nitrogen concentration in the soil and crop nitrogen uptake had the most impact on the nitrogen loadings. AnnAGNPS simulations of monthly nitrogen loadings are poor. However, statistical test (t‐test) showed that the predicted nitrogen loading is not significantly different from observed nitrogen loading at the 95 percent level of confidence.  相似文献   

13.
The U.S. Environmental Protection Agency National Stormwater Calculator (NSWC) simplifies the task of estimating runoff through a straightforward simulation process based on the EPA Stormwater Management Model. The NSWC accesses localized climate and soil hydrology data, and options to experiment with low‐impact development (LID) features for parcels up to 5 ha in size. We discuss how the NSWC treats the urban hydrologic cycle and focus on the estimation uncertainty in soil hydrology and its impact on runoff simulation by comparing field‐measured soil hydrologic data from 12 cities to corresponding NSWC estimates in three case studies. The default NSWC hydraulic conductivity is 10.1 mm/h, which underestimates conductivity measurements for New Orleans, Louisiana (95 ± 27 mm/h) and overestimates that for Omaha, Nebraska (3.0 ± 1.0 mm/h). Across all cities, the NSWC prediction, on average, underestimated hydraulic conductivity by 10.5 mm/h compared to corresponding measured values. In evaluating how LID interact with soil hydrology and runoff response, we found direct hydrologic interaction with pre‐existing soil shows high sensitivity in runoff prediction, whereas LID isolated from soils show less impact. Simulations with LID on higher permeability soils indicate that nearly all of pre‐LID runoff is treated; while features interacting with less‐permeable soils treat only 50%. We highlight the NSWC as a screening‐level tool for site runoff dynamics and its suitability in stormwater management.  相似文献   

14.
Abstract: This study compared lag time characteristics of low impact residential development with traditional residential development. Also compared were runoff volume, peak discharge, hydrograph kurtosis, runoff coefficient, and runoff threshold. Low impact development (LID) had a significantly greater centroid lag‐to‐peak, centroid lag, lag‐to‐peak, and peak lag‐to‐peak times than traditional development. Traditional development had a significantly greater depth of discharge and runoff coefficient than LID. The peak discharge in runoff from the traditional development was 1,100% greater than from the LID. The runoff threshold of the LID (6.0 mm) was 100% greater than the traditional development (3.0 mm). The hydrograph shape for the LID watershed had a negative value of kurtosis indicating a leptokurtic distribution, while traditional development had a positive value of kurtosis indicating a platykurtic distribution. The lag times of the LID were significantly greater than the traditional watershed for small (<25.4 mm) but not large (≥25.4 mm) storms; short duration (<4 h) but not long duration (≥4 h) storms; and low antecedent moisture condition (AMC; <25.4 mm) storms but not high AMC (≥25.4 mm) storms. This study indicates that LID resulted in lowered peak discharge depth, runoff coefficient, and discharge volume and increased lag times and runoff threshold compared with traditional residential development.  相似文献   

15.
ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time‐distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood‐control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented.  相似文献   

16.
ABSTRACT: This paper describes a concerted effort by the Taiwan Water Resources Bureau, the City of Taipei, and the Bureau of Fei‐tsui Reservoir Management to protect the water quality in the Fei‐tsui Reservoir.The reservoir is the major source of water supply for over two million people in the metropolitan area of Taipei. Over the years the reservoir has suffered from siltation and more recently eutrophication. The sources of the pollution are traced to the hundreds of tea gardens, rice fields and other agricultural areas in the watershed and to urban sources such as construction sites. Large amounts of nutrients enter the reservoir by way of storm water runoff during storm or typhoon events. Since 1999, various agencies have worked to initiate an effort to reduce nonpoint pollution in the Fei‐Tsui Reservoir watershed. Practices being considered include nonstructural measures such as nutrient management, and structural measures such as swales, detention basins, and wetlands, in addition to erosion and sediment control methods. A number of field tests have been completed on the performance of selected best management practices (BMPs). A strategy for implementing the BMPs at the watershed scale has been developed based on a total maximum daily load (TMDL) analysis that is reported in this paper.  相似文献   

17.
Development continues at a rapid pace throughout the country. Runoff from the impervious surfaces in these watersheds continues to be a major cause of degradation to freshwater bodies and estuaries. Low impact development techniques have been recommended to reduce these impacts. In this study, stormwater runoff and pollutant concentrations were measured as development progressed in both a traditional development, and a development that used low impact development techniques. Increases in total impervious area in each watershed were also measured. Regression relationships were developed between total impervious area and stormwater runoff/pollutant export. Significant, logarithmic increases in stormwater runoff and nitrogen and phosphorus export were found as development occurred in the traditional subdivision. The increases in stormwater runoff and pollutant export were more than two orders of magnitude. TN and TP export after development was 10 and 1 kg ha(-1) yr(-1), respectively, which was consistent with export from other urban/developed areas. In contrast, stormwater runoff and pollutant export from the low impact subdivision remained unchanged from pre-development levels. TN and TP export from the low impact subdivision were consistent with export values from forested watersheds. The results of this study indicate that the use of low impact development techniques on a watershed scale can greatly reduce the impacts of development on local waterways.  相似文献   

18.
ABSTRACT: Integrated watershed management in the Lower Mississippi Alluvial Plain (Delta) requires blending federal, state, and local authority. The federal government has preeminent authority over interstate navigable waters. Conversely, state and local governments have authority vital for comprehensive watershed management. In the Delta, integrating three broad legal and administrative regimes: (1) flood control, (2) agricultural watershed management, and (3) natural resources and environmental management, is vital for comprehensive intrastate watershed, and interstate river basin management. Federal Mississippi River flood control projects incorporated previous state and local efforts. Similarly, federal agricultural programs in the River's tributary headwaters adopted watershed management and were integrated into flood control efforts. These legal and administrative regimes implement national policy largely in cooperation with and through technical and financial assistance to local agencies such as levee commissions and soil and water conservation districts. This administrative infrastructure could address new national concerns such as nonpoint source pollution which require a watershed scale management approach. However, the natural resources and environmental management regime lacks a local administrative infrastructure. Many governmental and non governmental coordinating organizations have recently formed to address this shortcoming in the Delta. With federal and state leadership and support, these organizations could provide mechanisms to better integrate natural resources and environmental issues into the Delta's existing local administrative infrastructure.  相似文献   

19.
Best management practices (BMPs) play an important role in improving impaired water quality from conventional row crop agriculture. In addition to reducing nutrient and sediment loads, BMPs such as fertilizer management, reduced tillage, and cover crops could alter the hydrology of agricultural systems and reduce surface water runoff. While attention is devoted to the water quality benefits of BMPs, the potential co‐benefits of flood loss reduction are often overlooked. This study quantifies the effects of selected commonly applied BMPs on expected flood loss to agricultural and urban areas in four Iowa watersheds. The analysis combines a watershed hydrologic model, hydraulic model outputs, and a loss estimation model to determine relationships between hydrologic changes from BMP implementations and annual economic flood loss. The results indicate a modest reduction in peak discharge and economic loss, although loss reduction is substantial when urban centers or other high‐value assets are located downstream in the watershed. Among the BMPs, wetlands, and cover crops reduce losses the most. The research demonstrates that watershed‐scale implementation of agricultural BMPs could provide benefits of flood loss reduction in addition to water quality improvements.  相似文献   

20.
ABSTRACT: Watershed management strategies generally involve controlling nonpoint source pollution by implementing various best management practices (BMPs). Currently, stormwater management programs in most states use a performance‐based approach to implement onsite BMPs. This approach fails to link the onsite BMP performance directly to receiving water quality benefits, and it does not take into account the combined treatment effects of all the stormwater management practices within a watershed. To address these issues, this paper proposes a water quality‐based BMP planning approach for effective nonpoint source pollution control at a watershed scale. A coupled modeling system consisting of a watershed model (HSPF) and a receiving water quality model (CE‐QUAL‐W2) was developed to establish the linkage between BMP performance and receiving water quality targets. A Monte Carlo simulation approach was utilized to develop alternative BMP strategies at a watershed level. The developed methodology was applied to the Swift Creek Reservoir watershed in Virginia, and the results show that the proposed approach allows for the development of BMP strategies that lead to full compliance with water quality requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号