首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reviews suspended sediment sources and transport in small forest streams in the Pacific Northwest region of North America, particularly in relation to riparian management. Mass movements, reading and yarding practices, and burning can increase the supply of suspended sediment. Sediment yields recovered to pre‐harvest levels within one to six years in several paired catchment studies. However, delayed mass movements related to roads and harvesting may produce elevated suspended sediment yield one or more decades after logging. There is mixed evidence for the role of streamside tree throw in riparian buffers in supplying sediment to streams. Harvesting within the riparian zone may not increase suspended sediment yield if near stream soils are not disturbed. Key knowledge gaps relate to the relative roles of increased transport capacity versus sediment supply, the dynamics of fine sediment penetration into bed sediments, and the effects of forest harvesting on suspended sediment at different scales. Future research should involve nested catchments to examine suspended sediment response to forest practices at multiple spatial scales, in combination with process‐based field studies.  相似文献   

2.
3.
Headwater streams comprise 60 to 80 percent of the cumulative length of river networks. In hilly to mountainous terrain, they reflect a mix of hillslope and channel processes because of their close proximity to sediment source areas. Their morphology is an assemblage of residual soils, landslide deposits, wood, boulders, thin patches of poorly sorted alluvium, and stretches of bedrock. Longitudinal profiles of these channels are strongly influenced by steps created by sediment deposits, large wood, and boulders. Due to the combination of small drainage area, stepped shallow gradient, large roughness elements, and cohesive sediments, headwater streams typically transport little sediment or coarse wood debris by fluvial processes. Consequently, headwaters act as sediment reservoirs for periods spanning decades to centuries. The accumulated sediment and wood may be episodically evacuated by debris flows, debris floods, or gully erosion and transported to larger channels. In mountain environments, these processes deliver significant amounts of materials that form riverine habitats in larger channels. In managed steepland forests, accelerated rates of landslides and debris flows resulting from the harvest of headwater forests have the potential to seriously impact the morphology of headwater streams and downstream resources.  相似文献   

4.
Riparian functions such as the recruitment of wood to streams take decades to recover after a clear-fell harvest to the stream edge. The implications of two sets of riparian management scenarios on the short- and long-term recruitment of wood to a hypothetical stream (central North Island, New Zealand) were compared through simulation modeling. In the first set (native forest buffer), a designated treeless riparian buffer was colonized by native forest species after a pine crop (Pinus radiata) had been harvested to the stream bank. In the second set (pine to native forest buffer), native forest species were allowed to establish under the pine canopy in a designated riparian buffer. In general, the volume of wood was greater in streams with wider buffers (5-m to 50-m) and this effect increased with forest age (800 years). The pine to native forest buffer supplied more wood to the stream more quickly, and matched the long-term supply to the stream from the native forest buffer. For the native forest buffer, total wood volume was minimal for the first 70 years and then increased uniformly for the remainder of the simulation. In contrast, the pine to native forest buffer produced a bimodal response in total wood volume with the initial sharp peak at year 100 attributed to pine recruitment and a second more gradual peak lasting for the rest of the simulation, which was similar to levels in the native forest simulations. These results suggest that existing plantations could be an important source of wood to the stream during the first 100+ years of native forest development.  相似文献   

5.
Hemlock Woolly Adelgid (Adelges tsugae) is spreading across forests in eastern North America, causing mortality of eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). The loss of hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) may result in significant physical, chemical, and biological alterations to stream environments. To assess the influence of riparian hemlock stands on stream conditions and estimate possible impacts from hemlock loss in GSMNP, we paired hardwood- and hemlock-dominated streams to examine differences in water temperature, nitrate concentrations, pH, discharge, and available photosynthetic light. We used a Geographic Information System (GIS) to identify stream pairs that were similar in topography, geology, land use, and disturbance history in order to isolate forest type as a variable. Differences between hemlock- and hardwood-dominated streams could not be explained by dominant forest type alone as forest type yields no consistent signal on measured conditions of headwater streams in GSMNP. The variability in the results indicate that other landscape variables, such as the influence of understory Rhododendron species, may exert more control on stream conditions than canopy composition. The results of this study suggest that the replacement of hemlock overstory with hardwood species will have minimal impact on long-term stream conditions, however disturbance during the transition is likely to have significant impacts. Management of riparian forests undergoing hemlock decline should, therefore, focus on facilitating a faster transition to hardwood-dominated stands to minimize long-term effects on water quality.  相似文献   

6.
ABSTRACT: Harvesting 29-year-old loblolly pine (Pinus taeda L.) plantations on six small catchments in the Coastal Plain of west Tennessee caused variable but generally minor increases of storm-flow volumes during the four years following harvest. The increases were primarily associated with decreases of rainfall interception rather than with soil disturbance. Harvesting had no effect on stormflow volumes in six nearby catchments of 37-year-old loblolly pine to which the same treatments were applied. Postharvest increases of flow-weighted sediment concentrations averaged higher for the catchments with greater flows at both locations. During the fourth through eighth years after harvest, average sediment concentrations for harvested catchments at each location approximated closely the base rate of 62 mg L-1 previously defined for undisturbed pine types. Thus, relatively minor postharvest increases of stormflow volumes in the six 29-year-old plantations and increases of sediment concentrations in all 12 catchments were limited to about four years. Nevertheless, because of potential channel erosion, the findings confirm the need to extend stream management zones well up into drainages with intermittent and ephemeral flows wherever water quality is a concern. Despite certain undesirable effects of logging (baring of mineral soil, decreased weight and depth of forest floor, increased soil bulk density), the results demonstrate the high resilience developed by pine planted on severely eroded sites in the southern Coastal Plain.  相似文献   

7.
Relationships between riparian land cover, in-stream habitat, water chemistry, and macroinvertebrates were examined in headwater streams draining an agricultural region of Illinois. Macroinvertebrates and organic matter were collected monthly for one year from three intensively monitored streams with a gradient of riparian forest cover (6, 22, and 31% of riparian area). Bioassessments and physical habitat analyses were also performed in these three streams and 12 other nearby headwater streams. The intensively monitored site with the least riparian forest cover had significantly greater percent silt substrates than the sites with medium and high forest cover, and significantly higher very fine organics in substrates than the medium and high forested sites. Macroinvertebrates were abundant in all streams, but communities reflected degraded conditions; noninsect groups, mostly oligochaetes and copepods, dominated density and oligochaetes and mollusks, mostly Sphaerium and Physella, dominated biomass. Of insects, dipterans, mostly Chironomidae, dominated density and dipterans and coleopterans were important contributors to biomass. Collector-gatherers dominated functional structure in all three intensively monitored sites, indicating that functional structure metrics may not be appropriate for assessing these systems. The intensively monitored site with lowest riparian forest cover had significantly greater macroinvertebrate density and biomass, but lowest insect density and biomass. Density and biomass of active collector-filterers (mostly Sphaerium) decreased with increasing riparian forest. Hilsenhoff scores from all 15 sites were significantly correlated with in-stream habitat scores, percent riparian forest, and orthophosphate concentrations, and multiple regression indicated that in-stream habitat was the primary factor influencing biotic integrity. Our results show that these "drainage ditches" harbor abundant macroinvertebrates that are typical of degraded conditions, but that they can reflect gradients of conditions in and around these streams.  相似文献   

8.
ABSTRACT: In order to choose among “best management practices,” forest managers need to predict sediment yield to perennial streams following various forest land operations. The “universal soil loss equation” (USLE) is not directly applicable to forest operations because of the heterogenous soil surface conditions left by harvesting, site preparation, and planting. A sediment hazard index is proposed, to be based on the amount of exposed mineral soil and its proximity to streams. The model offered includes rainfall erosivity, soil erodibility and average land slope, together with the index W. A paired watershed experiment in the central Georgia Piedmont was used to estimate parameters in the model. The experimental basin (80 acres) was clearcut, drum roller chopped twice, and planted by machine. The standard error of estimate of sediment yield was computed to be about 50/lbs/ac per sampling period (four months). Use of William's erogivity index (storm flow times peak flow) reduced the standard error to 33/lbs/ac.  相似文献   

9.
Mass wasting and channel incision are widespread in the Nemadji River watershed of eastern Minnesota and northwestern Wisconsin. While much of this is a natural response to glacial rebound, sediment coring and tree ring data suggest that land use has also influenced these erosional processes. We characterized land use, inventoried mass wasting, surveyed stream channels and collected discharge data along segments of five streams in the Nemadji River watershed. Due to natural relief in this region, wetlands and agricultural lands are concentrated in the flatter terrain of the uplands of the Nemadji watershed, while forestland (coniferous or deciduous) is concentrated in the deeply incised (50-200% slope) stream valleys. Bankfull discharge was higher where forests had been converted from coniferous to deciduous forests and where there were fewer wetlands. Mass wasting increased exponentially with bankfull flows. While mass wasting was not correlated with forest type conversion and agricultural land use, it was negatively dependent upon wetland extent in headwater areas. Interactions between the spatial distribution of land use and terrain obfuscate any clear cause-and-effect relationships between land use, hydrology and fluvial processes.  相似文献   

10.
ABSTRACT: Timber harvest best management practices (BMPs) in Washington State were evaluated to determine their effectiveness at achieving water quality standards pertaining to sediment related effects. A weight‐of‐evidence approach was used to determine BMP effectiveness based on assessment of erosion with sediment delivery to streams, physical disturbance of stream channels, and aquatic habitat conditions during the first two years following harvest. Stream buffers were effective at preventing chronic sediment delivery to streams and physical disturbance of stream channels. Practices for ground‐based harvest and cable yarding in the vicinity of small streams without buffers were ineffective or only partially effective at preventing water quality impacts. The primary operational factors influencing BMP effectiveness were: the proximity of ground disturbing activities to streams; presence or absence of designated stream buffers; the use of special timber falling and yarding practices intended to minimize physical disturbance of stream channels; and timing of harvest to occur during snow cover or frozen ground conditions. Important site factors included the density of small streams at harvest sites and the steepness of inner stream valley slopes. Recommendations are given for practices that provide a high confidence of achieving water quality standards by preventing chronic sediment delivery and avoiding direct stream channel disturbance.  相似文献   

11.
ABSTRACT: We surveyed first‐to third‐order streams (channel widths from 1.4 to 10 m) in the southeastern slopes of the Cascade Range of Washington and found two distinct endpoints of riparian vegetation. Where the forest overstory is dominated by park‐like Ponderosa pine (Pinus ponderosa), channels are commonly bordered with a dense scrub‐shrub vegetation community. Where fire suppression and/or lack of active riparian zone management have resulted in dense encroachment of fir forests that create closed forest canopies over the channel, scrub‐shrub vegetation communities are virtually absent near the channel. Other factors being equal, distinct differences in channel morphology exist in streams flowing thru each riparian community. The scrub‐shrub channels have more box‐like cross‐sections, lower width‐to‐depth ratios, more pools, more undercut banks, more common sand‐dominated substrates, and similar amounts of woody debris (despite lower tree density). Temperature comparisons of forest and scrub‐shrub sections of two streams indicate that summer water temperatures are slightly lower in the scrub‐shrub streams. We surmise that these morphology and temperature effects are driven by differences in root density and canopy conditions that alter dynamic channel processes between each riparian community. We suspect that the scrub‐shrub community was more common in the landscape prior to the 20th century and may have been the dominant native riparian community for these stream types. We therefore suggest that managing these streams for dense riparian conifer does not mimic natural conditions, nor does it provide superior in‐stream habitat.  相似文献   

12.
Sediment and phosphorus (P) transport from the Minnesota River Basin to Lake Pepin on the upper Mississippi River has garnered much attention in recent years. However, there is lack of data on the extent of sediment and P contributions from riverbanks vis-à-vis uplands and ravines. Using two light detection and ranging (lidar) data sets taken in 2005 and 2009, a study was undertaken to quantify sediment and associated P losses from riverbanks in Blue Earth County, Minnesota. Volume change in river valleys as a result of bank erosion amounted to 1.71 million m over 4 yr. Volume change closely followed the trend: the Blue Earth River > the Minnesota River at the county's northern edge > the Le Sueur River > the Maple River > the Watonwan River > the Big Cobb River > Perch Creek > Little Cobb River. Using fine sediment content (silt + clay) and bulk density of 37 bank samples representing three parent materials, we estimate bank erosion contributions of 48 to 79% of the measured total suspended solids at the mouth of the Blue Earth and the Le Sueur rivers. Corresponding soluble P and total P contributions ranged from 0.13 to 0.20% and 40 to 49%, respectively. Although tall banks (>3 m high) accounted for 33% of the total length and 63% of the total area, they accounted for 75% of the volume change in river valleys. We conclude that multitemporal lidar data sets are useful in estimating bank erosion and associated P contributions over large scales, and for riverbanks that are not readily accessible for conventional surveying equipment.  相似文献   

13.
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Agricultural drainage ditches function to remove water quickly from farmed landscapes. Conventional ditch designs lack the form and function of natural stream systems and tend to be unstable and provide inadequate habitat. In October of 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to an alternative system with a two‐stage channel to investigate the improvements in water quality, stability, and habitat. Longitudinal surveys show a 12‐fold increase in the pool‐riffle formation. Cross‐sectional surveys show an average increase in bankfull width of approximately 10% and may be associated to an increased frequency in large storm events. The average increase in bankfull depth was estimated as 18% but is largely influenced by pool formation. Rosgen Stability Analyses show the channel to be highly stable and the banks at a low risk of erosion. The average bankfull recurrence interval was estimated to be approximately 0.30 years. Overall, the two‐stage ditch design demonstrates an increase in fluvial stability, creating a more consistent sediment budget, and increasing the frequency of important instream habitat features, making this best management practice a viable option for addressing issues of erosion, sediment imbalance, and poor habitat in agricultural drainage systems.  相似文献   

14.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

15.
Forest harvesting can increase solar radiation in the riparian zone as well as wind speed and exposure to air advected from clearings, typically causing increases in summertime air, soil, and stream temperatures and decreases in relative humidity. Stream temperature increases following forest harvesting are primarily controlled by changes in insolation but also depend on stream hydrology and channel morphology. Stream temperatures recovered to pre‐harvest levels within 10 years in many studies but took longer in others. Leaving riparian buffers can decrease the magnitude of stream temperature increases and changes to riparian microclimate, but substantial warming has been observed for streams within both unthinned and partial retention buffers. A range of studies has demonstrated that streams may or may not cool after flowing from clearings into shaded environments, and further research is required in relation to the factors controlling downstream cooling. Further research is also required on riparian microclimate and its responses to harvesting, the influences of surface/subsurface water exchange on stream and bed temperature regimes, biological implications of temperature changes in headwater streams (both on site and downstream), and methods for quantifying shade and its influence on radiation inputs to streams and riparian zones.  相似文献   

16.
Griffith, Michael B., F. Bernard Daniel, Matthew A. Morrison, Michael E. Troyer, James M. Lazorchak, and Joseph P. Schubauer‐Berigan, 2009. Linking Excess Nutrients, Light, and Fine Bedded Sediments to Impacts on Faunal Assemblages in Headwater Agricultural Streams. Journal of the American Water Resources Association (JAWRA) 45(6):1475‐1492. Abstract: Biological impairments in streams are typically defined by regulatory agencies in terms of altered invertebrate or fish assemblages. While nutrients, canopy cover, and sediment fines contribute to these impairments, these stressors are often defined, at least in part, by their impacts on periphyton. Path analysis can extend these assessments to impacts on invertebrates and fish by characterizing the direct and indirect relationships among variables along defined model pathways. With data from headwater tributaries in the Little Miami River, Ohio, we tested models of the impacts of nutrients [total nitrogen (TN), total phosphorus (TP), and the nitrogen to phosphorus (N/P) ratio], the percentage of (%) open canopy, and the % sand and fines on three periphyton metrics [periphytic ash‐free dry mass (AFDM), the percent abundance of cyanobacteria (% cyanobacteria), and the percent abundance of Chlorophyta (% Chlorophyta)] and, in turn, on selected invertebrate or fish metrics. Our objective was to develop and evaluate a statistical model that assesses the direct and indirect impacts of excess nutrients on macroinvertebrate and fish in these streams and demonstrate how this approach might be applicable elsewhere. The results suggest indirect pathways for the influences of nutrients, canopy cover, and fine bedded sediments on invertebrates or fish that are mediated by their influences on periphyton. This is in addition to any direct impacts of these stressors on the invertebrate and fish metrics. In most models, all three periphyton metrics increased with % open canopy. Periphytic AFDM increased with TN, while % cyanobacteria decreased. The % cyanobacteria also decreased with % sand and fines, but % Chlorophyta increased. The metrics, percent abundance of (%) three most dominant (macroinvertebrate) taxa, % Trichoptera, and % herbivorous fish all increased with periphytic AFDM, while % climbers, % swimmers, and %Lepomis cyanellus Rafinesque decreased. Lepomis cyanellus is an indicator species, because it is generally common in these streams and relatively tolerant to various common environmental stressors. The % three most dominant macroinvertebrate taxa increased while % Hydropsychidae (Trichoptera) and %L. cyanellus decreased with % cyanobacteria. The % Trichoptera and %L. cyanellus increased with % Chlorophyta. Some macroinvertebrate metrics, such as the % burrowers and number of burrower taxa, did not have any statistically significant relationships with the periphyton metrics but did exhibit a direct pathway with % sand and fines. These analyses illustrate how path analysis can be used to estimate the relationships among the variables in a conceptual model, modify the model, assess the relative importance of different paths, and explore responses resulting from stressors with interacting and indirect impacts.  相似文献   

17.
Brakebill, John W., Scott W. Ator, and Gregory E. Schwarz, 2010. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model. Journal of the American Water Resources Association (JAWRA) 46(4): 757-776. DOI: 10.1111/j.1752-1688.2010.00450.x Abstract: We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain.  相似文献   

18.
Forested riparian corridors are thought to minimize impacts of landscape disturbance on stream ecosystems; yet, the effectiveness of streamside forests in mitigating disturbance in urbanizing catchments is unknown. We expected that riparian forests would provide minimal benefits for fish assemblages in streams that are highly impaired by sediment or hydrologic alteration. We tested this hypothesis in 30 small streams along a gradient of urban disturbance (1–65% urban land cover). Species expected to be sensitive to disturbance (i.e., fluvial specialists and “sensitive” species that respond negatively to urbanization) were best predicted by models including percent forest cover in the riparian corridor and a principal components axis describing sediment disturbance. Only sites with coarse bed sediment and low bed mobility (vs. sites with high amounts of fine sediment) had increased richness and abundances of sensitive species with higher percent riparian forests, supporting our hypothesis that response to riparian forests is contingent on the sediment regime. Abundances of Etheostoma scotti, the federally threatened Cherokee darter, were best predicted by models with single variables representing stormflow (r2 = 0.34) and sediment (r2 = 0.23) conditions. Lentic-tolerant species richness and abundance responded only to a variable representing prolonged duration of low-flow conditions. For these species, hydrologic alteration overwhelmed any influence of riparian forests on stream biota. These results suggest that, at a minimum, catchment management strategies must simultaneously address hydrologic, sediment, and riparian disturbance in order to protect all aspects of fish assemblage integrity.  相似文献   

19.
Supreme Court cases have questioned if jurisdiction under the Clean Water Act extends to water bodies such as streams without year‐round flow. Headwater streams are central to this issue because many periodically dry, and because little is known about their influence on navigable waters. An accurate account of the extent and flow permanence of headwater streams is critical to estimating downstream contributions. We compared the extent and permanence of headwater streams from two field surveys with values from databases and maps. The first used data from 29 headwater streams in nine U.S. forests, whereas the second had data from 178 headwater streams in Oregon. Synthetic networks developed from the nine‐forest survey indicated that 33 to 93% of the channel lacked year‐round flow. Seven of the nine forests were predicted to have >200% more channel length than portrayed in the high‐resolution National Hydrography Dataset (NHD). The NHD and topographic map classifications of permanence agreed with ~50% of the field determinations across ~300 headwater sites. Classification agreement with the field determinations generally increased with increasing resolution. However, the flow classification on soil maps only agreed with ~30% of the field determination despite depicting greater channel extent than other maps. Maps that include streams regardless of permanence and size will aid regulatory decisions and are fundamental to improving water quality monitoring and models.  相似文献   

20.
Abstract: Cool summertime stream temperature is an important component of high quality aquatic habitat in Oregon coastal streams. Within the Oregon Coast Range, small headwater streams make up a majority of the stream network; yet, little information is available on temperature patterns and the longitudinal variability for these streams. In this paper we describe preharvest spatial and temporal patterns in summer stream temperature for small streams of the Oregon Coast Range in forests managed for timber production. We also explore relationships between stream and riparian attributes and observed stream temperature conditions and patterns. Summer stream temperature, channel, and riparian data were collected on 36 headwater streams in 2002, 2003, and 2004. Mean stream temperatures were consistent among summers and generally warmed in a downstream direction. However, longitudinal trends in maximum temperatures were more variable. At the reach scale of 0.5‐1.7 km, maximum temperatures increased in 17 streams, decreased in seven streams and did not change in three reaches. At the subreach scale (0.1‐1.5 km), maximum temperatures increased in 28 subreaches, decreased in 14, and did not change in 12 subreaches. Models of increasing temperature in a downstream direction may oversimplify fine‐scale patterns in small streams. Stream and riparian attributes that correlated with observed temperature patterns included cover, channel substrate, channel gradient, instream wood jam volume, riparian stand density, and geology type. Longitudinal patterns of stream temperature are an important consideration for background characterization of water quality. Studies attempting to evaluate stream temperature response to timber harvest or other modifications should quantify variability in longitudinal patterns of stream temperature prior to logging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号