首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Problem: The rollover crash is a serious crash type that often causes higher injury severities. Moreover, factors that contribute to the injury severities of rollover crashes may show instabilities in different vehicle types and time periods, which requires further investigations. This study utilizes the rollover crash data in North Carolina from Highway Safety Information System (HSIS) to study the effect instabilities of factors in vehicle type and time periods in rollover crashes. Methods: The injury severities of drivers are estimated using the random parameters logit (RPL) model with heterogeneity in means and variances. Available factors in HSIS have been categorized into three groups, which are drivers, road, and environment, respectively. This study also justifies the segmentations through transferability tests. The effects of identified significant factors are evaluated using marginal effects. Results: Factors such as FWP (farm, wood, and pasture areas), unhealthy physical condition, impaired physical condition, road adverse, and so forth have shown instabilities in marginal effects among vehicle types and time periods. Practical Applications: The finding of this research could provide important references for policy makers and automobile manufactures to help mitigate the injury severity of rollover crashes.  相似文献   

2.
Introduction: One of the challenging tasks for drivers is the ability to change lanes around large commercial motor vehicles. Lane changing is often characterized by speed, and crashes that occur due to unsafe lane changes can have serious consequences. Considering the economic importance of commercial trucks, ensuring the safety, security, and resilience of freight transportation is of paramount concern to the United States Department of Transportation and other stakeholders. Method: In this study, a mixed (random parameters) logit model was developed to better understand the relationship between crash factors and associated injury severities of commercial vehicle crashes involving lane change on interstate highways. The study was based on 2009–2016 crash data from Alabama. Results: Preliminary data analysis showed that about 4% of the observed crashes were major injury crashes and drivers of commercial motor vehicles were at-fault in more than half of the crashes. Acknowledging potential crash data limitations, the model estimation results reveal that there is increased probability of major injury when lane change crashes occurred on dark unlit portions of interstates and involve older drivers, at-fault commercial vehicle drivers, and female drivers. The results further show that lane change crashes that occurred on interstates with higher number of travel lanes were less likely to have major injury outcomes. Practical Applications: These findings can help policy makers and state transportation agencies increase awareness on the hazards of changing lanes in the immediate vicinity and driving in the blind spots of large commercial motor vehicles. Additionally, law enforcement efforts may be intensified during times and locations of increased unsafe lane changing activities. These findings may also be useful in commercial vehicle driver training and driver licensing programs.  相似文献   

3.
Introduction: Provide an updated examination of risk factors for large truck involvements in crashes resulting in injury or death. Methods: A matched case–control study was conducted in North Carolina of large trucks operated by interstate carriers. Cases were defined as trucks involved in crashes resulting in fatal or non-fatal injury, and one control truck was matched on the basis of location, weekday, time of day, and truck type. The matched-pair odds ratio provided an estimate of the effect of various driver, vehicle, or carrier factors. Results: Out-of-service (OOS) brake violations tripled the risk of crashing; any OOS vehicle defect increased crash risk by 362%. Higher historical crash rates (fatal, injury, or all crashes) of the carrier were associated with increased risk of crashing. Operating on a short-haul exemption increased crash risk by 383%. Antilock braking systems reduced crash risk by 65%. All of these results were statistically significant at the 95% confidence level. Other safety technologies also showed estimated benefits, although not statistically significant. Conclusions: With the exception of the finding that short-haul exemption is associated with increased crash risk, results largely bolster what is currently known about large truck crash risk and reinforce current enforcement practices. Results also suggest vehicle safety technologies can be important in lowering crash risk. This means that as safety technology continues to penetrate the fleet, whether from voluntary usage or government mandates, reductions in large truck crashes may be achieved. Practical application: Results imply that increased enforcement and use of crash avoidance technologies can improve the large truck crash problem.  相似文献   

4.
Introduction: Reducing the severity of crashes is a top priority for safety researchers due to its impact on saving human lives. Because of safety concerns posed by large trucks and the high rate of fatal large truck-involved crashes, an exploration into large truck-involved crashes could help determine factors that are influential in crash severity. The current study focuses on large truck-involved crashes to predict influencing factors on crash injury severity. Method: Two techniques have been utilized: Random Parameter Binary Logit (RPBL) and Support Vector Machine (SVM). Models have been developed to estimate: (1) multivehicle (MV) truck-involved crashes, in which large truck drivers are at fault, (2) MV track-involved crashes, in which large truck drivers are not at fault and (3) and single-vehicle (SV) large truck crashes. Results: Fatigue and deviation to the left were found as the most important contributing factors that lead to fatal crashes when the large truck-driver is at fault. Outcomes show that there are differences among significant factors between RPBL and SVM. For instance, unsafe lane-changing was significant in all three categories in RPBL, but only SV large truck crashes in SVM. Conclusions: The outcomes showed the importance of the complementary approaches to incorporate both parametric RPBL and non-parametric SVM to identify the main contributing factors affecting the severity of large truck-involved crashes. Also, the results highlighted the importance of categorization based on the at-fault party. Practical Applications: Unrealistic schedules and expectations of trucking companies can cause excessive stress for the large truck drivers, which could leads to further neglect of their fatigue. Enacting and enforcing comprehensive regulations regarding large truck drivers’ working schedules and direct and constant surveillance by authorities would significantly decrease large truck-involved crashes.  相似文献   

5.
IntroductionEmergency service vehicle crashes (ESVCs), including rollovers and collisions with other vehicles and fixed objects, are a leading cause of death among U.S. firefighters. Risk management (RM) is a proactive intervention to identifying and mitigating occupational risks and hazards. The goal of this study was to assess the effect of RM in reducing ESVCs. Methods: Three fire departments (A, B and C), representing urban and suburban geographies, and serving medium to large populations, participated in facilitated RM programs to reduce their ESVCs. Interventions were chosen by each department to address their department-specific circumstances and highest risks. Monthly crash rates per 10,000 calls were calculated for each department an average of 28 months before and 23 months after the start of the RM programs. Interrupted time series analysis was used to assess the effect of the RM programs on monthly crash rates. Poisson regression was used to estimate the number of crashes avoided. Economic data from Department A were analyzed to estimate cost savings. Results: Department A had a 15.4% (P = 0.30) reduction in the overall monthly crash rate immediately post-RM and a 1% (P = 0.18) decline per month thereafter. The estimated two-year average cost savings due to 167 crashes avoided was $253,100 (95%CI= $192,355 – $313,885). Department B had a 9.7% (P = 0.70) increase in the overall monthly crash rate immediately post-RM and showed no significant changes in their monthly crash rate. Department C had a 28.4% (P = 0.001) reduction in overall monthly crash rate immediately post-RM and a 1.2% (P = 0.09) increase per month thereafter, with an estimated 122 crashes avoided. Conclusions: RM programs have the potential to reduce ESVCs in the fire service and their associated costs; results may vary based on the interventions chosen and how they are implemented. Practical applications: Risk management may be an effective and broadly implemented intervention to reduce ESVCs in the US fire service.  相似文献   

6.

Introduction

Crossover and rollover crashes in earth-divided, traversable medians on rural divided highways can lead to severe injury outcomes. This study estimated severity models of these two crash types. Vehicle, driver, roadway, and median cross-section design data were factors considered in the models. A unique aspect of the data used to estimate the models were the availability of median cross-slope data, which are not commonly included in roadway inventory data files.

Methods

A binary logit model of cross-median crash severity and a multinomial logit model of rollover crash severity were estimated using five years of data from rural divided highways in Pennsylvania.

Results

The highest probability of a fatal or major injury in cross-median and rollover crashes was found to occur in cases when a driver was not wearing a seatbelt. While flatter cross-slopes and narrower medians were associated with more severe cross-median crash outcomes, steeper cross-slopes and narrower medians significantly increased rollover crash severity outcomes. The presence of horizontal curves was associated with increased probabilities of high-severity outcomes in a median rollover crash.

Impact on Industry

Modeling results in this study confirmed that cross-median and median rollover crash severity outcomes are associated with median cross-section design characteristics. Based on the estimated models, it appears that flatter and narrower medians lead to more severe injury outcomes in cross-median crashes. Steeper median cross-slopes and narrower medians were associated with higher probabilities of more severe outcomes in median rollover crashes. The results presented in this study suggest that there is a trade-off between median cross-section design and cross-median and rollover crashes in earth-divided, traversable medians on rural divided highways. While the severity models can be included in a framework to develop design guidance in relation to this trade-off, models of crash frequency should also be considered.  相似文献   

7.
Objective: The goal of this study is to evaluate the crash performance of guardrail end terminals in real-world crashes. Guardrail end terminals are installed at the ends of guardrail systems to prevent the rail from spearing through the car in an end-on collision. Recently, there has been a great deal of controversy as to the safety of certain widely used end terminal designs, partly because there is surprisingly little real-world crash data for end terminals. Most existing studies of end terminal crashes used data from prior to the mid-1990s. Since then, there have been large improvements to vehicle crashworthiness and seat belt usage rates, as well as new roadside safety hardware compliant with National Cooperative Highway Research Program (NCHRP) Report 350, “Recommended Procedures for the Safety Performance Evaluation of Highway Features.” Additionally, most existing studies of injury in end terminal crashes do not account for factors such as the occurrence of rollover. This analysis uses more recent crash data that represent post-1990s vehicle fleet changes and account for a number of factors that may affect driver injury outcome and rollover occurrence.

Methods: Passenger vehicle crashes coded as involving guardrail end terminals were identified in the set of police-reported crashes in Michigan in 2011 and 2012. End terminal performance was expected to be a function of end terminal system design. State crash databases generally do not identify specific end terminal systems. In this study, the coded crash location was used to obtain photographs of the crash site prior to the crash from Google Street View. These site photographs were manually inspected to identify the particular end terminal system involved in the crash. Multiple logistic regression was used to test for significant differences in the odds of driver injury and rollover between different terminal types while accounting for other factors.

Results: A total of 1,001 end terminal crashes from the 2011–2012 Michigan State crash data were manually inspected to identify the terminal that had been struck. Four hundred fifty-one crashes were found to be suitable for analysis. Serious to fatal driver injury occurred in 3.8% of end terminal crashes, moderate to fatal driver injury occurred in 11.8%, and 72.3% involved property damage only. No significant difference in moderate to fatal driver injury odds was observed between NCHRP 350 compliant end terminals and noncompliant terminals. Car drivers showed odds of moderate to fatal injury 3.6 times greater than LTV drivers in end terminal crashes. Rollover occurrence was not significantly associated with end terminal type.

Conclusions: Car drivers have greater potential for injury in end terminal crashes than light truck/van/sport utility vehicle drivers. End terminal designs compliant with NCHRP 350 did not appear to carry different odds of moderate driver injury than noncompliant end terminals. The findings account for driver seat belt use, rollover occurrence, terminal orientation (leading/trailing), control loss, and the number of impact events. Rollover and nonuse of seat belts carried much larger increases in injury potential than end terminal type. Rollover did not appear to be associated with NCHRP 350 compliance.  相似文献   

8.
Introduction: With the rapid development of transportation infrastructures in precipitous areas, the mileage of freeway tunnels in China has been mounting during the past decade. Provided the semi-constrained space and the monotonous driving environment of freeway tunnels, safety concerns still remain. This study aims to investigate the uniqueness of the relationships between crash severity in freeway tunnels and various contributory factors. Method: The information of 10,081 crashes in the entire freeway network of Guizhou Province, China in 2018 is adopted, from which a subset of 591 crashes in tunnels is extracted. To address spatial variations across various road segments, a two-level binary logistic approach is applied to model crash severity in freeway tunnels. A similar model is also established for crash severity on general freeways as a benchmark. Results: The uniqueness of crash severity in tunnels mainly includes three aspects: (a) the road-segment-level effects are quantifiable with the environmental factors for crash severity in tunnels, but only exist in the random effects for general freeways; (b) tunnel has a significantly higher propensity to cause severe injury in a crash than other locations of a freeway; and (c) different influential factors and levels of contributions are found to crash severity in tunnels compared with on general freeways. Factors including speed limit, tunnel length, truck involvement, rear-end crash, rainy and foggy weather and sequential crash have positive contributions to crash severity in freeway tunnels. Practical applications: Policy implications for traffic control and management are advised to improve traffic safety level in freeway tunnels.  相似文献   

9.
Introduction: Fatal crashes that include at least one fatality of an occupant within 30 days of the crash cause large numbers of injured persons and property losses, especially when a truck is involved. Method: To better understand the underlying effects of truck-driver-related characteristics in fatal crashes, a five-year (from 2012 to 2016) dataset from the Fatality Analysis Reporting System (FARS) was used for analysis. Based on demographic attributes, driving violation behavior, crash histories, and conviction records of truck drivers, a latent class clustering analysis was applied to classify truck drivers into three groups, namely, ‘‘middle-aged and elderly drivers with low risk of driving violations and high historical crash records,” ‘‘drivers with high risk of driving violations and high historical crash records,” and ‘‘middle-aged drivers with no driving violations and conviction records.” Next, equivalent fatalities were used to scale fatal crash severities into three levels. Subsequently, a partial proportional odds (PPO) model for each driver group was developed to identify the risk factors associated with the crash severity. Results' Conclusions: The model estimation results showed that the risk factors, as well as their impacts on different driver groups, were different. Adverse weather conditions, rural areas, curved alignments, tractor-trailer units, heavier weights and various collision manners were significantly associated with the crash severities in all driver groups, whereas driving violation behaviors such as driving under the influence of alcohol or drugs, fatigue, or carelessness were significantly associated with the high-risk group only, and fewer risk factors and minor marginal effects were identified for the low-risk groups. Practical Applications: Corresponding countermeasures for specific truck driver groups are proposed. And drivers with high risk of driving violations and high historical crash records should be more concerned.  相似文献   

10.
IntroductionThe focus of this paper is on illustrating the feasibility of aggregating data from disparate sources to investigate the relationship between single-vehicle truck crash injury severity and detailed weather conditions. Specifically, this paper presents: (a) a methodology that combines detailed 15-min weather station data with crash and roadway data, and (b) an empirical investigation of the effects of weather on crash-related injury severities of single-vehicle truck crashes.MethodRandom parameters ordinal and multinomial regression models were used to investigate crash injury severity under different weather conditions, taking into account the individual unobserved heterogeneity. The adopted methodology allowed consideration of environmental, roadway, and climate-related variables in single-vehicle truck crash injury severity.Results and conclusionsResults showed that wind speed, rain, humidity, and air temperature were linked with single-vehicle truck crash injury severity. Greater recorded wind speed added to the severity of injuries in single-vehicle truck crashes in general. Rain and warmer air temperatures were linked to more severe crash injuries in single-vehicle truck crashes while higher levels of humidity were linked to less severe injuries. Random parameters ordered logit and multinomial logit, respectively, revealed some individual heterogeneity in the data and showed that integrating comprehensive weather data with crash data provided useful insights into factors associated with single-vehicle truck crash injury severity.Practical applicationsThe research provided a practical method that combined comprehensive 15-min weather station data with crash and roadway data, thereby providing useful insights into crash injury severity of single-vehicle trucks. Those insights are useful for future truck driver educational programs and for truck safety in different weather conditions.  相似文献   

11.
12.
Introduction: Motorcyclists are exposed to more fatalities and severe injuries per mile of travel as compared to other vehicle drivers. Moreover, crashes that take place at intersections are more likely to result in serious or fatal injuries as compared to those that occur at non-intersections. Therefore, the purpose of this study is to evaluate the contributing factors to motorcycle crash severity at intersections. Method: A data set of 7,714 motorcycle crashes at intersections in the State of Victoria, Australia was analyzed over the period of 2006–2018. The multinomial logit model was used for evaluating the motorcycle crashes. The severity of motorcycle crashes was divided into three categories: minor injury, serious injury and fatal injury. The risk factors consisted of four major categories: motorcyclist characteristics, environmental characteristics, intersection characteristics and crash characteristics. Results: The results of the model demonstrated that certain factors increased the probability of fatal injuries. These factors were: motorcyclists aged over 59 years, weekend crashes, midnight/early morning crashes, morning rush hours crashes, multiple vehicles involved in the crash, t-intersections, crashes in towns, crashes in rural areas, stop or give-way intersections, roundabouts, and uncontrolled intersections. By contrast, factors such as female motorcyclists, snowy or stormy or foggy weather, rainy weather, evening rush hours crashes, and unpaved roads reduced the probability of fatal injuries. Practical Applications: The results from our study demonstrated that certain treatment measures for t-intersections may reduce the probability of fatal injuries. An effective way for improving the safety of stop or give-way intersections and uncontrolled intersections could be to convert them to all-way stop controls. Further, it is recommended to educate the older riders that with ageing, there are physiological changes that occur within the body which can increase both crash likelihood and injury severity.  相似文献   

13.
Introduction: With prevalent and increased attention to driver inattention (DI) behavior, this research provides a comprehensive investigation of the influence of built environment and roadway characteristics on the DI-related vehicle crash frequency per year. Specifically, a comparative analysis between DI-related crash frequency in rural road segments and urban road segments is conducted. Method: Utilizing DI-related crash data collected from North Carolina for the period 2013–2017, three types of models: (1) Poisson/negative binomial (NB) model, (2) Poisson hurdle (HP) model/negative binomial hurdle (HNB) model, and (3) random intercepts Poisson hurdle (RIHP) model/random intercepts negative binomial hurdle (RIHNB) model, are applied to handle excessive zeros and unobserved heterogeneity in the dataset. Results: The results show that RIHP and RIHNB models distinctly outperform other models in terms of goodness-of-fit. The presence of commercial areas is found to increase the probability and frequency of DI-related crashes in both rural and urban regions. Roadway characteristics (such as non-freeways, segments with multiple lanes, and traffic signals) are positively associated with increased DI-related crash counts, whereas state-secondary routes and speed limits (higher than 35 mph) are associated with decreased DI-related crash counts in rural and urban regions. Besides, horizontal curved and longitudinal bottomed segments and segments with double yellow lines/no passing zones are likely to have fewer DI-related crashes in urban areas. Medians in rural road segments are found to be effective to reduce DI-related crashes. Practical Applications: These findings provide a valuable understanding of the DI-related crash frequency for transportation agencies to propose effective countermeasures and safety treatments (e.g., dispatching more police enforcement or surveillance cameras in commercial areas, and setting more medians in rural roads) to mitigate the negative consequences of DI behavior.  相似文献   

14.
Introduction: Animal–vehicle collisions (AVCs) can result in serious injury and death to drivers, animals' death, and significant economic costs. However, the cost effectiveness of the majority of AVC mitigation measures is a significant issue. Method: A mobile-based data collection effort was deployed to measure signs under the Utah Department of Transportation's (UDOT) jurisdiction. The crash data were obtained from the UDOT risk management database. ArcGIS was employed to link these two data sets and extract animal-related crashes and signs. An algorithm was developed to process the data and identify AVCs that occurred within sign recognition distance. Kernel density estimation (KDE) technique was applied to identify potential crash hotspots. Results: Only 2% of AVCs occurred within the recognition distance of animal crossing signs. Almost 58% of animal-related crashes took place on the Interstate and U.S. highways, wherein only 30% of animal crossing signs were installed. State routes with a higher average number of signs experienced a lower number of AVCs per mile. The differences between AVCs that occurred within versus outside of sign recognition distance were not statistically significant regarding crash severity, time of crash, weather condition, driver age, vehicle speed, and type of animal. It is more likely that drivers become accustomed to deer crossing signs than cow signs. Conclusions: Based on the historical crash data and landscape structure, with attention given to the low cost safety improvement methods, a combination of different types of AVC mitigation measures can be developed to reduce the number of animal-related crashes. After an in-depth analysis of AVC data, warning traffic signs, coupled with other low cost mitigation countermeasures can be successfully placed in areas with higher priority or in critical areas. Practical applications: The findings of this study assist transportation agencies in developing more efficient mitigation measures against AVCs.  相似文献   

15.
Risk-based hazmat transportation route evaluation involves risk calculations taking into consideration the probability of collision related accident occurrence and detailed consequence analysis of various event scenarios. Probabilistic hazmat transportation risk assessment mainly depends on three important factors i.e. accident rate, Average Daily Traffic and population density besides route length which has a definite bearing on it. An effort has been made to estimate the route segment specific (location-specific) accident rate instead of aggregate National or State average values in order to bring specificity into the issue of decision making to avoid routes with higher accident rates. Instead of using default accident rate for different highway types developed with the US data, which are not well-comparable when used in Indian situations; the author used site-specific truck accident data. Subsequently, Loss of Containment (LOC) probabilities and spillage probabilities for different route segments have been computed and compared. Finally, route segment-wise total risk is estimated which is a convenient measure of the average number of persons likely to be exposed from all the possible consequence event scenarios resulting from releases of different hazmats being transported along the studied routes. The present study highlights the route evaluation carried out based on total risk computation, without going through detailed event based consequence analysis on two State Highway routes and one major urban road passing through important industrial corridors of Surat District in western India, to enable routing decisions by local authorities and also for planning emergency mitigation purposes.  相似文献   

16.
Introduction: As more states legalize medical/recreational marijuana use, it is important to determine if state motor-vehicle surveillance systems can effectively monitor and track driving under the influence (DUI) of marijuana. This study assessed Colorado's Department of Revenue motor-vehicle crash data system, Electronic Accident Reporting System (EARS), to monitor non-fatal crashes involving driving under the influence (DUI) of marijuana. Methods: Centers for Disease Control and Prevention guidelines on surveillance system evaluation were used to assess EARS' usefulness, flexibility, timeliness, simplicity, acceptability, and data quality. We assessed system components, interviewed key stakeholders, and analyzed completeness of Colorado statewide 2014 motor-vehicle crash records. Results: EARS contains timely and complete data, but does not effectively monitor non-fatal motor-vehicle crashes related to DUI of marijuana. Information on biological sample type collected from drivers and toxicology results were not recorded into EARS; however, EARS is a flexible system that can incorporate new data without increasing surveillance system burden. Conclusions: States, including Colorado, could consider standardization of drug testing and mandatory reporting policies for drivers involved in motor-vehicle crashes and proactively address the narrow window of time for sample collection to improve DUI of marijuana surveillance. Practical applications: The evaluation of state motor-vehicle crash systems' ability to capture crashes involving drug impaired driving (DUID) is a critical first step for identifying frequency and risk factors for crashes related to DUID.  相似文献   

17.
Objectives: Proper roadside design is crucial in order to mitigate the consequences associated with single-vehicle run-off-road (SVROR) crashes. However, the Gulf Cooperation Council (GCC) region lacks in-depth, detailed information on its roadside design status. Hence, there is a need for an in-service evaluation of roadside design in the GCC region. The objective of this study is to assess the existing roadside design in a medium-sized, low-density city in the United Arab Emirates (UAE).

Methods: A multiyear crash database was used to identify 116 locations where SVROR injury crashes occurred between 2013 and 2016 in the city of Al Ain in the UAE. Visits to these locations were made in order to assess their roadside design. Subsequently, the collected data were analyzed. Roadside design was classified based on whether or not it deviated from roadside design guidelines. The guidelines adopted as a benchmark were those contained in the 2012 Abu Dhabi Department of Transport Roadside Design Guide (RDG) and/or those in the 2011 American Association of State Highway and Transportation Officials (AASHTO) RDG. It is worth stressing that local guidelines are heavily based on the 2011 AASHTO RDG.

Results: The study found that almost one quarter of all SVROR crashes resulted in injuries. The study also found that a staggering 80.17% of the SVROR injury crashes investigated occurred at locations where roadside design deviated from the benchmark. Lack of an adequate clear zone was the main cause of noncompliant locations. Most SVROR injury crash locations containing roadside design with deviations from the benchmark were located on roads with posted speed limits of 100 kph or higher. Light poles, trees, curbs, and barriers were the most harmful objects most often struck, and tree collisions accounted for the highest number of severe crashes. Ninety-four and 86% of all studied locations containing light poles and trees, respectively, were found to be noncompliant with the benchmark. Twenty-eight percent of all SVROR injury crashes involved a rollover. All rollovers were preceded by a collision with a tree, pole, guardrail, or curb. Forty-four percent of all rollover crashes resulted in severe injuries.

Conclusions: Significant revision of the existing roadside design not only in the area studied but throughout the UAE is recommended. The authors propose measures that may be useful in making roadside design in the area studied better align with the benchmark requirements.  相似文献   


18.
IntroductionThe influence of amendments to Federal Motor Vehicle Safety Standard (FMVSS) 108, requiring conspicuity treatments on heavy tractors and trailers, was determined in analyses of the odds of fatal collisions in darkness.MethodComparisons were made between crashes in which conspicuity treatment was likely relevant, and those in which it was likely irrelevant.ResultsOver 23 years, the odds that a fatal collision involving a heavy truck occurred in darkness declined by 58% among relevant crashes, while little decline was observed for irrelevant crashes. Disaggregation into crash types revealed the largest declines occurred in fatal rear-end and angle collisions. A parallel analysis of light vehicles also found declines but no differences among crash type. Similar trends were also observed for nonfatal rear end collisions.ConclusionThe results suggest that detection failure may have contributed to the risk of striking a tractor-semitrailer in darkness, and that conspicuity treatments have reduced this risk.Impact on IndustryConspicuity treatments appear to reduce risk of collision into heavy trucks in darkness. It is likely that this benefit would also extend to other vehicles that are not included in the FMVSS 108 regulation (e.g., buses, single unit trucks, recreational vehicles), although many are so equipped, regardless of the regulation.  相似文献   

19.
Introduction: Safety of horizontal curves on rural two-lane, two-way undivided roadways is not fully explored. This study investigates factors that impact injury severity of such crashes. Method: To achieve the aim of this paper, issues associated with police-reported crash data such as unobserved heterogeneity and temporal stability need to be accounted for. Hence, a mixed logit model was estimated, while heterogeneity in means and variances is investigated by considering four injury severity outcomes for drivers: severe injury, moderate injury, possible injury, and no injury. Crash data for the period between 2011 and 2016 for crashes that occurred in the state of Oregon was analyzed. Temporal stability in factors determining the injury severity was investigated by identifying three time periods through splitting crash data into 2011–2012, 2013–2014, and 2015–2016. Results: Despite some factors affecting injuries in all specified time periods, the values of the marginal effects showed relative differences. The estimation results revealed that some factors increased the risk of being involved in severe injury crashes, including head-on collisions, drunk drivers, failure to negotiate curves, older drivers, and exceeding the speed limits. Conclusions: The hypothesis that attributes of injury severity are temporally stable is rejected. For example, young drivers (30 years old and younger) and middle-aged drivers were found to be temporally instable over time. Practical applications: The findings could help transportation authorities and safety professionals to enhance the safety of horizontal curves through appropriate and effective countermeasures.  相似文献   

20.
Objective: The goal of this study was to evaluate how well an in-laboratory rollover crash test methodology that constrains vehicle motion can reproduce the dynamics of unconstrained full-scale steering-induced rollover crash tests in sand.

Methods: Data from previously-published unconstrained steering-induced rollover crash tests using a full-size pickup and mid-sized sedan were analyzed to determine vehicle-to-ground impact conditions and kinematic response of the vehicles throughout the tests. Then, a pair of replicate vehicles were prepared to match the inertial properties of the steering-induced test vehicles and configured to record dynamic roof structure deformations and kinematic response.

Results: Both vehicles experienced greater increases in roll-axis angular velocities in the unconstrained tests than in the constrained tests; however, the increases that occurred during the trailing side roof interaction were nearly identical between tests for both vehicles. Both vehicles experienced linear accelerations in the constrained tests that were similar to those in the unconstrained tests, but the pickup, in particular, had accelerations that were matched in magnitude, timing, and duration very closely between the two test types. Deformations in the truck test were higher in the constrained than the unconstrained, and deformations in the sedan were greater in the unconstrained than the constrained as a result of constraints of the test fixture, and differences in impact velocity for the trailing side.

Conclusions: The results of the current study suggest that in-laboratory rollover tests can be used to simulate the injury-causing portions of unconstrained rollover crashes. To date, such a demonstration has not yet been published in the open literature. This study did, however, show that road surface can affect vehicle response in a way that may not be able to be mimicked in the laboratory. Lastly, this study showed that configuring the in-laboratory tests to match the leading-side touchdown conditions could result in differences in the trailing side impact conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号