首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为保证200 MW燃气流风洞高压氧气系统安全运行,从初始能量出发,对高压氧气系统充气、供气、排气时管道内的激波管流动、绝热压缩等过程进行安全分析,并提出针对性安全措施。结果表明:对于充气管道内存在的激波管流动,当驱动气体压力为20 MPa、被驱动气体压力为0.1 MPa时,激波反射后末端气体温度远远高于200 ℃,通过减小阀门开启速度,对阀前管道进行充气以减小上下游压差,可避免因绝热压缩产生的高温;供气管道充填时,管道内最高温度为73 ℃,通过控制充填速度,可进一步降低管道内氧气温度;通过高压排气、低压排气2种模式,可满足国标中对氧气流速的要求。研究结果可为氧气管道远程安全操作提供参考。  相似文献   

2.
Urban gas pipelines usually have high structural vulnerability due to long service time. The locations across urban areas with high population density make the gas pipelines easily exposed to external activities. Recently, urban pipelines may also have been the target of terrorist attacks. Nevertheless, the intentional damage, i.e. terrorist attack, was seldom considered in previous risk analysis of urban gas pipelines. This work presents a dynamic risk analysis of external activities to urban gas pipelines, which integrates unintentional and intentional damage to pipelines in a unified framework. A Bayesian network mapping from the Bow-tie model is used to represent the evolution process of pipeline accidents initiating from intentional and unintentional hazards. The probabilities of basic events and safety barriers are estimated by adopting the Fuzzy set theory and hierarchical Bayesian analysis (HBA). The developed model enables assessment of the dynamic probabilities of consequences and identifies the most credible contributing factors to the risk, given observed evidence. It also captures both data and model uncertainties. Eventually, an industrial case is presented to illustrate the applicability and effectiveness of the developed methodology. It is observed that the proposed methodology helps to more accurately conduct risk assessment and management of urban natural gas pipelines.  相似文献   

3.
The formation of hydrate will lead to serious flow assurance problems in deepwater submarine natural gas transmission pipelines. However, the accurate evaluation model of the hydrate blocking risk for submarine natural gas transportation is still lacking. In this work, a novel model is established for evaluating the hydrate risk in deepwater submarine gas pipelines. Based on hydrate growth-deposition mechanism, the mathematical model mainly consists of mass, momentum and energy conservation equations. Meantime, the model results are obtained by finite difference method and iterative technique. Finally, the model has been applied in the production of deepwater gas field (L Gas Field) in China, and the sensitivity analysis of relevant parameters has been carried out. The results show that: (a). The mathematical model can well predict the hydrate blockage risk in deepwater natural gas pipelines after verification. (b). Hydrate is easily formed at the intersection of horizontal pipeline and vertical riser, and the maximum blocking position often occurs in middle of the riser. (c). The hydrate blockage degree and length of hydrate formation region (HFR) decrease with the increase of gas transport rate. (d). The hydrate blockage degree and length of HFR decrease with the increase of gas transport temperature. (e). The hydrate blockage degree and length of HFR increase with the extension of horizontal pipeline. (f). Injecting inhibitors can effectively inhibit hydrate formation and blockage, but the improvement of transmission measures can significantly reduce the dosage of inhibitor. It is concluded that measures such as increasing gas transportation rate and temperature, shortening horizontal pipeline length, optimizing inhibitor injection point and injection rate can play a safe, economic and efficient role in hydrate preventing and controlling.  相似文献   

4.
A 30% aqueous solution of KOCN placed in a 55 gallon HDPE drum at 50 °C began venting gas almost immediately. Although a vent was kept open the drum exploded within 1–2 h of being filled. This report reviews the steps taken after the accident to find its cause and to recommend safe operating conditions. The DIERS vent sizing package (VSP), used as a closed system adiabatic reactor, was able to simulate the incident under controlled laboratory conditions. Data were thereby collected for the first time on the runaway kinetics of the KOCN hydrolysis. Isothermal data were obtained in a highly sensitive microwatt heat flow calorimeter in an open system. It was demonstrated that even under isothermal conditions, the hydrolysis rates accelerated once underway, reaching maxima in 30 h at 25 °C and 6.7 h at 40 °C. There is satisfactory agreement of these results with other work on 0.5% KOCN solutions reported in earlier studies.  相似文献   

5.
The pure decomposition behavior of 2,2′-azobis (isobutyronitrile) (AIBN) and its physical phase transformation were examined and discussed. The thermal decomposition of this self-reactive azo compound was explored using differential scanning calorimetry (DSC) to elucidate the stages in the progress of this chemical reaction. DSC was used to predict the kinetic and process safety parameters, such as self-accelerating decomposition temperature (SADT), time to maximum reaction rate under adiabatic conditions (TMRad), and apparent activation energy (Ea), under isothermal and adiabatic conditions with thermal analysis models. Moreover, vent sizing package 2 (VSP2) was applied to examine the runaway reaction combined with simulation and experiments for thermal hazard assessment of AIBN. A thorough understanding of this reaction process can identify AIBN as a hazardous and vulnerable chemical during upset situations. The sublimation and melting of AIBN near its apparent onset decomposition temperature contributed to the initial steps of the reaction and explained the exothermic attributes of the peaks observed in the calorimetric investigation.  相似文献   

6.
The characterization of thermal decomposition of cumene hydroperoxide (CHP) in cumene from kinetic point of view is of great interest for industrial applications. However, the efforts done so far by the researchers lead only to the availability of single kinetic laws (first order, autocatalytic, etc.) whose usefulness is strongly limited by the presence in the starting solutions of some impurities. A detailed model aiming at simulating both, thermal and kinetic behavior of the system, is now presented. In other words, the proposed model tries to simulate CHP thermal decomposition process at varying reaction conditions (different initial temperature, in the range 120–160 °C, different initial CHP concentrations, addition of α-methylstyrene to CHP solutions in cumene) and during isothermal, scanning and adiabatic runs. A good capability of the model is observed to simulate the system behavior by using data collected under isothermal and adiabatic conditions and during scanning calorimetric runs. It is important to stress that the use of the model proposed in the present investigation does not require the adoption of adjustable parameters.  相似文献   

7.
Gas emission rate from borehole is one of the most important indexes for the coal and gas outburst prediction. The mathematical model of gas flow in the coal seam, gas flow into the measuring chamber, gas pressure change in the measuring chamber, and gas flow out of the chamber through the pipe is established. Gas migration in the coal seam, gas pressure in borehole chamber and gas flow in pipe is simulated using the finite difference method. Gas emission rate is obtained under dynamic boundary conditions. The influence of gas storage parameters on gas emission rate from borehole is analyzed. Results show that: the gas pressure and the permeability coefficient have great impacts on the value of gas flow quantity in borehole. The larger the original gas pressure of coal seam and the permeability coefficient of coal seam are, the greater the maximum value of gas emission rate form borehole and the later the maximum appears.  相似文献   

8.
Managing the oil and gas pipelines against corrosion is one of the major challenges of the oil and gas sector because of the complexities associated with the initiation, stabilization, and growth of the corrosion defects. The present research attempts to develop a model for predicting the maximum depth of pitting corrosion in oil and gas pipelines using SVM algorithm. In order to improve the SVM performance, Hybrid PSO and GA was utilized. Monte Carlo simulation was used to determine the time lapse for the pit depth growth. In order to implement the above modeling approaches and to prove their efficiency and accuracy against a large database, a total of 340 data samples for corrosion depth and rate are retrieved from the Iranian Oilfields. The performance of the new algorithm shows that it has higher stability and accuracy. In addition, the forecasting results of the new algorithm are compared with the 11 intelligent optimization algorithms, it shows that the novel hybrid algorithm has higher accuracy, better generalization ability, and stronger robustness. The coefficient of determination (R2) value in the testing phase for SVM-HGAPSO was estimated by 0.99. Proposed hybrid model and Monte-Carlo simulations pitting corrosion based on Poisson square wave process have been used to predict the time evolution of the mean value of the pit depth distribution for different categories of maximum pitting rates (low, moderate, high and sever). The models was validated with 4 field data for each of the pitting corrosion categories and the results agreed well. The pipelines under severe pitting corrosion rate were, more conservatively predicted by HGAPSO-SVR than those under low, moderate and high pitting corrosion rates. The results obtained demonstrate the potentials of this technique for the integrity management of corroded aged pipelines.  相似文献   

9.
针对大口径埋地输气管道发生物理爆炸对并行含体积缺陷邻管的冲击行为,利用LS-DYNA和LS-PREPOST有限元软件建立基于光滑粒子流体动力学-有限单元法的管-土-炸药耦合模型,分析不同缺陷深度、不同缺陷表面积、不同缺陷位置和不同爆心距下邻管的动力响应;基于爆腔预估公式和峰值振速经验公式,验证了所建耦合模型的可靠性,并通过设计算例开展多工况分析。研究结果表明:迎爆面上的缺陷处为动力响应的热点区域,最大响应特征值(应力、位移与振速)位于缺陷中心处,随缺陷深度的增加或管间距的减小特征值增速由平缓到急剧;相比缺陷位置和表面尺寸对管道的扰动程度,缺陷深度和爆心距对管道的动力响应影响较大;在本研究的条件下,建议埋地并行输气管道的安全间距不应小于5.16 m,且腐蚀深度不大于管道壁厚的0.633 6倍。研究结果可为埋地输气管道极端灾害下的风险评估提供技术支撑,为并行管道可能的抗爆隔爆设计提供模拟数据支持。  相似文献   

10.
A substantial amount of oil & gas products are transported and distributed via pipelines, which can stretch for thousands of kilometers. In British Columbia (BC), Canada, alone there are over 40,000 km of pipelines currently being operated. Because of the adverse environmental impact, public outrage and significant financial losses, the integrity of the pipelines is essential. More than 37 pipe failures per year occur in BC causing liquid spills and gas releases, damaging both property and environment. BC oil & gas commission (BCOGS) has indicated metal loss due to internal corrosion as one of the primary causes of these failures. Therefore, it is of a paramount importance to timely identify pipelines subjected to severe internal corrosion in order to improve corrosion mitigation and pipeline maintenance strategies, thus minimizing the likelihood of failure. To accomplish this task, this paper presents a Bayesian belief network (BBN)-based probabilistic internal corrosion hazard assessment approach for oil & gas pipelines. A cause-effect BBN model has been developed by considering various information, such as analytical corrosion models, expert knowledge and published literature. Multiple corrosion models and failure pressure models have been incorporated into a single flexible network to estimate corrosion defects and associated probability of failure (PoF). This paper also explores the influence of fluid composition and operating conditions on the corrosion rate and PoF. To demonstrate the application of the BBN model, a case study of the Northeastern BC oil & gas pipeline infrastructure is presented. Based on the pipeline's mechanical characteristics and operating conditions, spatial and probabilistic distributions of corrosion defect and PoF have been obtained and visualized with the aid of the Geographic Information System (GIS). The developed BBN model can identify vulnerable pipeline sections and rank them accordingly to enhance the informed decision-making process.  相似文献   

11.
Transient gas flow in relief line is computed to determine the effects of fluctuations of discharge capacity on flow field. Based on the theories of computational fluid dynamics and aerodynamics, the solution and the analysis were carried out using finite volume CFD solver FLUENT 13.0. Flow fields in seven working conditions were simulated in the numerical investigation and their results were compared. The results showed that the fluctuations of discharge capacity, including extent and period, exert obvious effects on transient gas flow field in relief line. The larger the fluctuation extent and the shorter the fluctuation period, the more significant is the effect. The application method of simulation results is provided to guide the laying and fixing of pipelines, which is verified by filed measurement.  相似文献   

12.
The leak of gas pipelines can be detected and located by the acoustic method. The technologies of recognizing and extracting wave characteristics are summarized in details in this paper, which is to distinguish leaking and disturbing signals from time and frequency domain. A high-pressure and long distance leak test loop is designed and established by similarity analysis with field transmission pipelines. The acoustic signals collected by sensors are de-noised by wavelet transform to eliminate the background noises, and time-frequency analysis is used to analyze the characteristics of frequency domain. The conclusion can be drawn that most acoustic signals are concentrated on the ranges of 0-100 Hz. The acoustic signal recognition and extraction methods are verified and compared with others and it proves that the disturbing signals can be efficiently removed by the analysis of time and frequency domain, while the new characteristics of the accumulative value difference, mean value difference and peak value difference of signals in adjacent intervals can detect the leak effectively and decrease the false alarm rate significantly. The formula for leak location is modified with consideration of the influences of temperature and pressure. The positioning accuracy can be significantly improved with relative error between 0.01% and 1.37%.  相似文献   

13.
In order to study a new leak detection and location method for oil and natural gas pipelines based on acoustic waves, the propagation model is established and modified. Firstly, the propagation law in theory is obtained by analyzing the damping impact factors which cause the attenuation. Then, the dominant-energy frequency bands of leakage acoustic waves are obtained through experiments by wavelet transform analysis. Thirdly, the actual propagation model is modified by the correction factor based on the dominant-energy frequency bands. Then a new leak detection and location method is proposed based on the propagation law which is validated by the experiments for oil pipelines. Finally, the conclusions and the method are applied to the gas pipelines in experiments. The results indicate: the modified propagation model can be established by the experimental method; the new leak location method is effective and can be applied to both oil and gas pipelines and it has advantages over the traditional location method based on the velocity and the time difference. Conclusions can be drawn that the new leak detection and location method can effectively and accurately detect and locate the leakages in oil and natural gas pipelines.  相似文献   

14.
燃气管网定量风险分析方法综述   总被引:3,自引:2,他引:3  
以城市燃气管网的风险为研究对象,分析并提出一种可用于城市燃气管网定量风险分析的新思路,包含了不同事故后果及其物理模型的分析即事故可能性分析、后果分析和风险评价,分为失效事故假定、泄漏率计算、物理效应计算、致死率计算、风险值计算、风险评价等环节;整理、研究城市燃气管网定量风险分析所涉及的多种物理模型,并通过比较不同模型的特点,分析各个模型的不足之处;最后针对国内外研究现状及燃气管网风险的特点,指出研究发展方向:研究风险在燃气管网内的传播,提出燃气管网相继失效的风险分析方法。所提出的分析思路、计算方法可与工程应用相结合。  相似文献   

15.
Explosion pressure prediction is indispensable to ensure process safety against accidental gas explosions. This work is aimed at establishing a theoretical method for predicting confined methane-air explosion pressure under isotropic turbulence. The results indicated that the pressure rise rate becomes significantly increased by the existence of isotropic turbulence, which effect on peak value of explosion pressure is negligible. Among various models of turbulent burning velocity, the calculated pressure rise rate using Chiu model, Williams model and Liu model is relatively closer to experimental value. With the increase of turbulent integral length and RMS turbulent fluctuation velocity, the pressure rise rate becomes increased continuously. The influence of adiabatic compression and isothermal compression on pressure rise rate could be ignored. To predict explosion pressure in a more accurate way, the dynamic variation of turbulent integral length and RMS turbulent fluctuation velocity should be considered in the future.  相似文献   

16.
为提高含均匀腐蚀缺陷油气管线爆破压力的预测精度,保障长输油气管线的安全运行,将遗传算法和BP神经网络相结合,建立含均匀腐蚀缺陷油气管线爆破压力预测的遗传-BP神经网络(GA-BPNNs)模型。采用已有文献实验数据,分析对比该模型与AGA NG-18,ASME B31G,修正B31G,PCORRC,DNV RP-F101和SHELL 92等方法用于X46,X52,X60,X65,X80等材质油气管线含均匀腐蚀缺陷时爆破压力的计算误差。结果表明:GA-BPNNs模型用于含均匀腐蚀缺陷油气管线爆破压力预测时,误差在-7.78%~6.06%之间,预测精度明显高于目前国内外通用规范的计算结果;该模型操作简单,适用范围广,工程实用性好,为含缺陷压力管道爆破压力的预测提供更好的思路和方案。  相似文献   

17.
Corrosion is the main reason for the failure of buried gas pipelines. For effective corrosion failure probability analysis, the structural reliability theory was adopted in this study to establish two calculation models for pipeline corrosion failure: the pressure failure model and von Mises stress failure model. Then, two calculation models for the corrosion failure probability were established based on a corrosion depth growth model obtained from actual survey data of soil corrosion characteristics. In an example, Monte Carlo simulation (MCS) and subset simulation (SS) were used to analyze the corrosion failure probability of pipelines, and the results were compared. SS can compensate for the shortcomings of MCS as it has higher computational efficiency and accuracy. Therefore, SS was adopted to simulate variations in the corrosion failure probability of buried pipelines with the service time for the two failure probability calculation models, which were applied to a natural gas pipeline located in a chemical industry park in Zhuhai, China. A sensitivity analysis was carried out on the relevant parameters that affect the failure probability. The results showed that multiple loads caused by the covering soil, residual stress, temperature differential, and bending stress have a non-negligible effect on the pipeline reliability. The corrosion coefficients gradually become the most important factors that affect the failure probability with increased service time. The proposed methodology considers the actual operating conditions of pipelines to provide a reliable theoretical basis for integrity management.  相似文献   

18.
城区天然气管道泄漏数值模拟与爆炸危害分析   总被引:1,自引:0,他引:1  
在人口密度为三级和四级的城区内,密集的高建筑物对天然气管道泄漏后的扩散和流场形成产生重要影响。本文以某城市的实际情况为例,建立多建筑物的空间几何模型,采用k-ε湍流方程,SIMPLE算法,模拟了在三种不同风流速度、三种不同压力条件下,城区天然气管道泄漏气体在多建筑物地形中的扩散情况。根据模拟结果,依据天然气的爆炸极限,对模拟结果及其火灾爆炸危害的范围进行了对比分析。结果表明,CH4气体的泄漏扩散同时受管道压力、风流速度和周围建筑物的影响;同时受当地风速的影响,泄漏气柱在风流作用下会发生偏折,造成阻挡风流的建筑物内侧危险气体浓度升高,大大增加建筑物周围环境的危险性。研究结果对城区天然气管道的建设具有一定的指导意义。  相似文献   

19.
针对山区油气管道地质灾害的基本特征,将层次分析与模糊综合评价相结合,建立起可用于山区管道地质灾害易发性评价的层次-模糊评价模型;并从自然因素、管道敷设状况、灾害活动和设计与误操作四个方面建立山区油气管道地质灾害易发性评价体系.首先依据专家经验构造各层影响因素的判断矩阵,并利用层次分析法求出各影响因素的权重集,然后对山区油气管道地质灾害易发性进行多级模糊综合评价,最终根据评价结果确定山区油气管道地质灾害易发性等级.通过具体实例检验了本文所建立评价方法的应用效果.  相似文献   

20.
A completely adiabatic pipe that is similar to a coal-mine coal or rock roadway was simulated using the computational software AutoReaGas. A partially adiabatic pipe was established using an experimental steel pipe with heat-insulating material installed in the inner wall, and a non-adiabatic pipe was also established using the experimental steel pipe without the heat-insulating material. Premixed methane/air deflagrations were studied in the three types of pipe to reveal the influence of the condition of the pipe wall on gas explosions. The results showed that in the completely adiabatic pipe, the maximum explosion overpressure was dynamic and decreased and increased with increasing distance; however, the flame-propagation speed increased gradually. In the partially adiabatic pipe and the non-adiabatic pipe, the maximum explosion overpressure and flame-propagation speed increased initially and then gradually decreased with increasing distance. The majority of explosion overpressure and flame-propagation speed values at each gauge in the completely adiabatic pipe were larger than those of the partially adiabatic pipe. Both measurements at each gauge in the partially adiabatic pipe were much greater than those of the non-adiabatic pipe. The condition of the pipe wall has a large influence on the maximum explosion overpressure and the flame-propagation speed. In future explosion experiments, heat insulating materials should be installed in the inner wall of steel pipes to obtain data for application to the prevention and control of gas explosions in underground coal mines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号