首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为有效提高无火焰泄放装置产品质量特性和应用技术,避免或减轻爆炸事故发生造成的灾害程度,选择玉米淀粉粉尘为测试粉尘,采用1 m3爆炸罐进行扇形无火焰泄放装置爆炸泄放实验。结果表明:扇形无火焰泄放装置不适合重复使用。当扇形无火焰泄放装置重复进行爆炸泄放实验时,爆炸罐内压力会呈现升高趋势,而外场压力和温度呈现下降趋势,且阻火元件孔隙内残留大量玉米淀粉粉尘燃烧后生成的炭黑以及积聚部分高温燃烧的粉尘,致使阻火元件损坏失效。  相似文献   

2.
为了研究墨粉在爆炸泄压过程中燃烧与流动的变化机制,通过改变泄爆片尺寸、墨粉浓度以及泄爆片的惯性力等参数对爆炸泄放过程中反应釜中压力以及外场火焰形态变化进行试验研究,同时与完全封闭空间内不同墨粉浓度的压力曲线对比。研究结果表明:相同泄爆开口尺寸下,粉尘浓度与受控爆炸压力(采用爆炸泄压保护措施后工业腔体内产生的压力)负相关;开口尺寸增加可以提升泄压效率;结合外场火焰形态的变化情况揭示声动火焰不稳定性对反应釜中压力发展的影响;通过无惯性泄爆试验的对比证明泄爆片惯性对受控爆炸压力的影响不可忽视。  相似文献   

3.
To further understand the dynamic mechanism of dust explosion through a vent duct, we designed a small-scale cylindrical vessel connected with a vent duct and performed a dust explosion venting experiment under different opening pressures using corn starch as the explosive medium in this study. The results show that weakening effect of duct on venting is positively correlated with the opening pressure. The explosion pressure in the duct presents a three-peak-structure with time, successively caused by the membrane breaking shock wave, the secondary explosion in the tube, and the continuous combustion, and decreases gradually with the propagation distance. Meanwhile, the three pressure peaks are positively correlated with the opening pressure, while the time interval between them goes to contrary. The increase of opening pressure leads to the increase of secondary explosion intensity and reverse flow in the vessel, further accelerates the reaction rate in the vessel, and then shortens the duration of combustion in the vessel until the phenomenon of flame reignition in the vessel disappears.  相似文献   

4.
利用球型容器与管道组合,开展连通容器气体爆炸与泄爆实验,分析连通条件下,火焰在管道中的传播过程及其对起爆容器和传爆容器的压力影响。实验结果表明:连通容器气体爆炸中,火焰从起爆容器到传爆容器传播经历了一段不断加速,但加速度不断减小的过程;泄爆过程中,火焰传播过程与密闭爆炸时基本一致。管道中火焰加速传播,使得传爆容器的爆炸压力和强度相较于作为起爆容器时均明显增加,危险更大,采用与起爆容器相同的泄爆面积,无法满足对连通容器中传爆容器的泄爆。同时,泄爆是一个快速的能量泄放过程应选择合理的泄爆方式,防止二次危害。  相似文献   

5.
柱形压力容器开口泄爆过程数值模拟研究   总被引:4,自引:1,他引:3  
为研究柱形压力容器泄爆规律,采用经典流体力学软件FLUENT对典型的柱形压力容器泄爆过程进行数值模拟,分析从泄爆口开启到泄压结束时间段压力发展、火焰传播、气体流动及可燃气体浓度变化特性。结果表明:不同泄爆压力下容器内压力发展变化呈现不同特点,在较小泄爆压力情况下会出现压力再度上升的双峰现象。泄爆过程中产生的湍流沿泄爆口附近容器壁拉长火焰面,并加快燃烧速率。同时就容器内不同点火位置对爆炸强度影响进行研究,得出在泄爆压力为0.04 MPa时,底面点火对本柱形压力容器产生的最大升压速率约为中心点火最大升压速率的1.4倍。  相似文献   

6.
The method of explosion venting is widely used in industrial explosion-proof design due to its simple operation, economical and practical features. A dump vessel vented platform was built. By changing the vacuum level and the gas in the dump vessels and the structural size of linked vessels, the pressure in the explosion vessel and the dump vessel was compared, and the influencing factors of explosion venting investigated. The main conclusions are as follows: In the explosion venting process, the higher the vacuum in the dump vessel, the smaller the pressure peak of the explosion vessel and the dump vessel, and the faster the explosion pressure is lowered. When the dump vessel is under the same vacuum level and the gas in the dump vessel is CO2, the maximum pressure of the explosion vessel and the dump vessel is less than the maximum pressure when the containment medium is air. Under the same vacuum condition, the larger the volume ratio of the dump vessel and the explosion vessel, the smaller the pressure peak of the explosion vessel, the faster the explosion pressure drops, and the volume of the dump vessel reaches or exceeds the explosion vessel. Increasing the volume ratio of the containment vessel to the explosion vessel facilitates protection of the explosion vessel and the containment vessel. Under the same vacuum condition, when the gas explosion in 113 L vessel vents into 22 L vessel, the longer the length of the pipe, the greater the maximum pressure in the spherical vessel. When the gas explosion in 22 L vessel vents into 113 L dump vessel, as the pipeline grows, the maximum pressure in the two vessels decreases, but the reduction is not significant. In practical application, it is recommended to use a vacuum of 0.08Mpa or more for the dump vessel vented, and the containment medium is CO2.In terms of the structural size of the container, it is recommended that the ratio of the receiving container to the explosion container be as large as possible, and the pipe length be as long.  相似文献   

7.
为研究泄爆面积比对泄爆门泄爆特性的影响,运用FLUENT软件建立煤矿井下1∶1巷道模型,在不同泄爆面积比的工况下对瓦斯爆炸传播规律及泄爆过程进行模拟,分析其变化特征和封闭泄爆效果。结果表明:S0工况条件下,压力和温度衰减后保持在0.29 MPa和565 K;S1~S4工况条件下,S4比S1,S2和S3达到封闭状态时间快780,260,50 ms,封闭时间最大节省70.91%;随着泄爆面积比的增大,封闭火区内的压力的峰值、峰值数量和达到封闭状态时间减小,泄爆能力增强;火焰速度峰值和衰减速率增大;温度的初始峰值、峰值数量和达到稳定状态时间减小,最大峰值反而增大,说明泄爆门对瓦斯爆炸火焰无抑制作用。  相似文献   

8.
A pilot scale interconnected vessels experiment system was established, and the closed and vented gas explosion characteristics in the system were studied, using 10% methane–air mixture. Regularity of pressure variation in vessels and flame propagation in linked pipes was analyzed. Furthermore, the effects of transmission style, ignition position, pipe length, and initial pressure on explosion severity were discussed. For the closed explosion: explosion in interconnected vessels presents strongly destructive power to secondary vessel, especially transmission from the big vessel to the small one; the worst ignition position is shifting from ignition in the interconnected pipe to the walls of the two vessels; as far as ignition in big vessel is concerned, the peak pressure in secondary vessel increases with the pipe length much faster than that for ignition in small vessel; the peak pressures in two vessels are approximate linear functions of initial pressure. For the vented explosion: the transmission style and interconnected pipe length have significant impacts on the effect of venting on the protection; in order to obtain the better venting effect, the use of a divergent interconnected pipe from the big vessel to the small one in industry is advised and it is necessary to reduce the interconnected pipe length as far as possible or install flame arrester in the interconnected pipe.  相似文献   

9.
Explosion venting is a frequently-used way to lower explosion pressure and accident loss. Recently, studies of vessel explosion venting have received much attention, while little attention has been paid to pipe explosion venting. This study researched the characteristics of explosion venting for Coal Bed Methane (CBM) transfer pipe, and proposed the way of explosion venting to chamber in order to avoid the influence of explosion venting on external environment, and investigated the effects of explosion venting to atmosphere and chamber. When explosion venting to atmosphere, the average explosion impulse 4.89 kPa s; when explosion venting to 0 MPa (atmospheric pressure) chamber, average explosion impulse is 7.52 kPa s; when explosion venting to −0.01 MPa chamber, explosion flame and pressure obviously drop, and average explosion impulse decreases to 4.08 kPa s; when explosion venting to −0.09 MPa chamber, explosion flame goes out and average explosion impulse is 1.45 kPa s. Thus, the effect of explosion venting to negative chamber is far better than that to atmospheric chamber. Negative chamber can absorb more explosion gas and energy, increase stretch of explosion flame, and eliminate free radical of gas explosion. All these can promote the effect of explosion venting to negative chamber.  相似文献   

10.
The relief of a gas explosion in a tubular vessel by venting can be predicted by using a mathematical model. In this model, the flame acceleration is represented by an increase in the burning velocity. The movement of a vent cover can be included. The model assumes that the vent is blocked by the vent cover prior to the explosion. the venting ratio was the most influential parameter in terms of relieving the pressure. In the case of a large venting ratio, the flame acceleration made a highly significant contribution, whereas for small venting ratios, the weight of the vent cover contributed to the relief more than the flame acceleration. When the pressure is required to be reduced significantly, the venting ratio, the vent open pressure and the weight of the vent cover must all be reduced.  相似文献   

11.
The explosion of flammable mixtures in interconnected compartments is commonly defined as “pressure piling”. Peak pressures much higher than the predictable thermodynamic values are likely to be generated in this geometry, yielding the phenomenon of major interest in industrial safety. In this paper, a CFD model was implemented, aiming at understanding the major factors affecting pressure piling in two cylindrical interconnected vessels, by varying the volume ratio between the two interconnected vessels and the ignition position. A combustion model was specifically developed to follow the flame propagation in any combustion regimes as a function of the local conditions: laminar, flamelet and distributed reaction zone.The model was validated by comparison with experimental results. The agreement between the experiments and the simulations has allowed the interpretation of the pressure piling phenomenon and the understanding of the mechanisms involved. More precisely, the results have showed that the pressure peak intensity is mainly affected by the coupling between the pre-compression of the mixture in the secondary vessel and the violence of explosion in the same vessel as related to the venting time, the latest quantified by the turbulent Bradley number, Brt i.e. by the reaction time to the venting time ratio.  相似文献   

12.
Ducts are often recommended in the design of dust explosion venting in order to discharge materials to safe locations. However, the maximum reduced overpressure increases in a duct-vented vessel rather than in a simply vented vessel. This needs to be studied further for understanding the duct-venting mechanism. Numerous duct-vented dust explosion experiments were conducted, using a 20 L spherical chamber at elevated static activation overpressures, ranging from 1.8 bar to 6 bar. Duct diameters of 15 mm and 28 mm, and duct lengths of 0 m (simply venting), 1 m and 2 m, were selected. Explosion pressures both in the vessel and in the duct were recorded by pressure sensors, with a frequency of 5 kHz. Flame signals in the duct were also obtained by phototransistors. Results indicate that the secondary explosion occurring in the duct increases the maximum reduced overpressure in the vessel. The secondary explosion is greatly affected by the duct diameter and static activation overpressure, and hence influences the amplification of the maximum reduced overpressure. Larger static activation overpressure decreases the severity of the secondary explosion, and hence decreases the increment in the maximum reduced overpressure. The secondary pressure peak is more obvious as the pressure accumulation is easier in a duct with a smaller diameter. However, the increment of the maximum reduced overpressure is smaller because blockage effect, flame front distortion, and turbulent mixing due to secondary explosion are weaker in a narrow duct. The influence of duct length on the maximum reduced overpressure is small at elevated static activation overpressures, ranging from 1.8 bar to 6 bar at 15 mm and 28 mm duct diameters.  相似文献   

13.
针对市政排污管网等典型受限空间内可燃气体爆燃风险,建立由水平管道和竖直分支管道构成的数值模型,研究竖直分支管道不同泄爆开启压力对甲烷爆燃压力的影响.研究结果表明:不同泄爆开启压力条件下,管道内存在爆燃压力积聚和泄放的双重效应;水平管道内各测点压力时程曲线均表现为先增大后减小而后出现亥姆霍兹振荡,随着与爆源距离的增加,初...  相似文献   

14.
Explosion venting is widely applied in industrial explosion-proof designs due to the convenient, economical and practical features of this method. Natural gas is usually stored in storage tanks. If the gas in the vessel is mixed with air and encounters an ignition source, explosion venting might occur, producing jet fire, generating new secondary derivative accidents and causing casualties and property losses. In this paper, a set of test platforms including wire-mesh suppression devices is established to study the inhibition of jet fire induced by explosion venting by wire mesh. The experimental research shows that a wire mesh significantly inhibits the jet fire induced by explosion venting. The flame propagation velocity and pressure clearly decrease with increasing numbers of wire-mesh layers. The wire-mesh structure significantly affects the flame propagation, and the more layers of mesh there are, the better the suppression effect is. The flame temperature gradually decreases with the addition of the wire mesh. The mesh size significantly affects the pressure propagation of explosion venting. The explosion pressure gradually decreases with the addition of the wire mesh. With increasing distance between the wire mesh and the explosion vent, the maximum temperature first increases and then decreases, and the maximum explosion pressure first decreases and then increases. In the case of single gas cloud, the flame suppression effect is the most obvious when the wire mesh is 0.2 m away from the explosion vent. In the case of double gas clouds, the flame suppression effect is the most significant when the distance between the wire mesh and the first gas cloud is 0.4 m.  相似文献   

15.
对甲烷-空气预混气体在球形容器和球形管道连通容器内的泄爆过程进行实验研究,根据实验结果得出在较小的泄压面积时,与密闭容器爆炸实验比较,不能降低容器内的最大压力,反而会增大容器内的最大压力。通过实验结果分析,泄爆口安装在远离点火源的位置,当发生预混气体爆炸时能较好地降低容器内的最大压力,起到保护容器的作用。  相似文献   

16.
To investigate the effects of cylinders placed parallel to the venting direction on the structural response of the vessel walls to an explosion, 25 batches of vented explosion tests were conducted in a 1 m3 rectangular vessel. Two types of structural response with different amplitudes and frequency distributions were observed and evaluated by comparing the vibration data with both the pressure data and high-speed videos. A low-amplitude structural response of approximately 150–250 m/s2, which increased slightly as VBR increased, was triggered by a combination of the initial flame propagation, external explosion, Helmholtz oscillations, and the Taylor instability. A high-amplitude structural response of approximately 9500 m/s2 was also observed, which decreased sharply as VBR increased. Additionally, the high amplitude response was never observed when more than two cylinders were present in the vessel. The high amplitude response was triggered due to the coupling between the acoustic wave, the flame, and the resonance of the vessel. The presence of obstacles did not increase the severity of the structural responses under the current experimental conditions. To the contrary, the presence of obstacles in the container attenuated or even inhibited the high-amplitude vibration of the container caused by the explosion.  相似文献   

17.
The effect of the vent burst pressure on explosion venting of a rich methane-air mixture was experimentally investigated in a small cylindrical vessel. The experimental results show that Helmholtz oscillation of the internal flame bubble of the methane-air mixture can occur in a vessel with a vent area much smaller than that reported by previous researchers, and the period of Helmholtz oscillation decreases slightly when the vent burst pressure increases. The maximum overpressure in the vessel increases approximately linearly with the increase in the vent burst pressure; however, the pressure peaks induced by Helmholtz oscillation always remain approximately several kilopascals. The external flame reaches its maximum length in a few milliseconds after vent failure and then oscillates in accordance with the pressure oscillation in the vessel. The maximum length of the external flame increases, but its duration time decreases with the increase in the vent burst pressure.  相似文献   

18.
A series of experiments on explosion venting of methane-air mixtures are performed to scrutinize the pressure evolution as well as the flame dynamics and morphology at various vent conditions. Specifically, a premixed flame is ignited at the center of a polycarbonate cylindrical compartment, with three various vent areas considered (with negligible vent relief pressure). As expected, the highest maximum pressure is observed in the case of the smallest vent area. For all three cases, the pressure evolution experiences two major peaks, associated with the instants (i) when the maximum flame front surface area in the chamber is reached and (ii) when an external explosion occurs due to venting of unburned gases, respectively. For the fuel-rich mixtures, a flashback is observed subsequent to the external explosion, constituting the key outcome of the present work. The flame tip velocities show two general trends, namely, exponential acceleration towards the vent, while a flame propagates towards the blocked side of the compartment with no acceleration, which is important to know in the fire/explosion safety applications.  相似文献   

19.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   

20.
A quantitative risk assessment (QRA) tool has been developed by TNO for the external safety of industrial plants with a dust explosion hazard. As a first step an industrial plant is divided into groups of modules, defined by their size, shape, and constructional properties. Then the relevant explosion scenarios are determined, together with their frequency of occurrence. These include scenarios in which one module participates, as well as domino scenarios. The frequency is partly based on casuistry.

A typical burning velocity is determined depending on the ignition type, the dust properties and the local conditions for flame acceleration. The resulting pressure development is predicted with the ‘thin flame model’. Module failure occurs when the explosion load exceeds thresholds, which are derived from single degree of freedom (SDOF) calculations for various types of modules. A model has been developed to predict the process of pressure venting after module failure and the related motion of launched module parts.

The blast effects of the primary explosion are based on results from calculations with BLAST3D. The blast and flame effects of the secondary external explosion due to venting are calculated using existing models. The throw of fragments and debris is quantified with a recently developed model. This model is based on trajectory calculations and gives the impact densities, velocities, and angles as output. Furthermore the outflow of bulk material is taken into account. The consequences for external objects and human beings are calculated using existing models. Finally the risk contours and the Societal risk (FN curve) are calculated, which can be compared to regulations.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号