首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation management strategies on NO(3) leaching in irrigated corn. Two irrigation schedules (1.0x and 1.25x optimum) were combined with six N fertilizer treatments broadcast as NH(4)NO(3) (kg N ha(-1)): 300 and 250 applied pre-plant; 250 applied pre-plant and sidedress; 185 applied pre-plant and sidedress; 125 applied pre-plant and sidedress; and 0. Porous-cup tensiometers and solution samplers were installed in each of the four highest N treatments. Soil solution samples were collected during the 2001 and 2002 growing seasons. Maximum corn grain yield was achieved with 125 or 185 kg N ha(-1), regardless of the irrigation schedule (IS). The 1.25x IS exacerbated the amount of NO(3) leached below the 152-cm depth in the preplant N treatments, with a mean of 146 kg N ha(-1) for the 250 and 300 kg N preplant applications compared with 12 kg N ha(-1) for the same N treatments and 1.0x IS. With 185 kg N ha(-1), the 1.25x IS treatment resulted in 74 kg N ha(-1) leached compared with 10 kg N ha(-1) for the 1.0x IS. Appropriate irrigation scheduling and N fertilizer rates are essential to improving N management practices on these sandy soils.  相似文献   

2.
Understanding water and nutrient transport through the soil profile is important for efficient irrigation and nutrient management to minimize excess nutrient leaching below the rootzone. We applied four rates of N (28, 56, 84, and 112 kg N ha(-1); equivalent to one-fourth of annual N rates being evaluated in this study for bearing citrus trees), and 80 kg Br- ha(-1) to a sandy Entisol with >25-yr-old citrus trees to (i) determine the temporal changes in NO3-N and Br- distribution down the soil profile (2.4 m), and (ii) evaluate the measured concentrations of NO3-N and Br- at various depths with those predicted by the Leaching Estimation and Chemistry Model (LEACHM). Nitrate N and Br concentrations approached the background levels by 42 and 214 d, respectively. Model-predicted volumetric water content and concentrations of NO3-N and Br- at various depths within the entire soil profile were very close to measured values. The LEACHM data showed that 21 to 36% of applied fertilizer N leached below the root zone, while tree uptake accounted for 40 to 53%. Results of this study enhance our understanding of N dynamics in these sandy soils, and provide better evaluation of N and irrigation management to improve uptake efficiency, reduce N losses, and minimize the risk of ground water nitrate contamination from soils highly vulnerable to nutrient leaching.  相似文献   

3.
Predicting nitrate leaching under potato crops using transfer functions   总被引:1,自引:0,他引:1  
Nitrate leaching is a major issue in many cultivated soils. Models that predict the major processes involved at the field scale could be used to test and improve management practices. This study aims to evaluate a simple transfer function approach to predict nitrate leaching in sandy soils. A convective lognormal transfer (CLT) function is convoluted with functional equations simulating N mineralization, plant N uptake, N fertilizer dissolution, and nitrification at the soil surface to predict solute concentrations under potato (Solanum tuberosum L.) and barley (Hordeum vulgare L.) fields as a function of drainage water. Using this approach, nitrate flux concentrations measured in drainable lysimeters (1-m soil depth) were reasonably predicted from 29 Apr. 1996 to 3 Dec. 1996. With average application rates of 16.9 g m(-2) of N fertilizer in potato crops, mean nitrate-leaching losses measured under potato were 8.5 g N m(-2). Tuber N uptake averaged 9.7 g N m(-2) and soil mineral N at start (spring) and end (fall) of N mass balance averaged 1.7 and 4.5 g N m(-2), respectively. Soil N mineralization was estimated by difference (4.3 g N m(-2) on average) and was small compared with N fertilization. Small nitrate flux concentrations at the beginning of the cropping season (May) resulted mainly from initial soil nitrate concentrations. Measured and predicted nitrate flux concentrations significantly increased at mid-season (July-August) following important drainage events coupled with complete dissolution and nitrification of N fertilizers, and declining N uptake by potato plants. Decreases in nitrate concentrations before the end of year (November-December) underlined the predominant effect of N fertilizers applied for the most part at planting acting as a pulse input of solute.  相似文献   

4.
Municipal sewage sludge is often used on arable soils as a source of nitrogen and phosphorus, but it also contains organic contaminants that may be leached to the ground water. Di(2-ethylhexyl)phthalate (DEHP) is a priority pollutant that is present in sewage sludge in ubiquitous amounts. Column experiments were performed on undisturbed soil cores (20-cm depth x 20-cm diameter) with three different soil types: a sand, a loamy sand, and a sandy loam soil. Dewatered sewage sludge was spiked with 14C-labeled DEHP (60 mg kg(-1)) and bromide (5 g kg(-1)). Sludge was applied to the soil columns either as five aggregates, or homogeneously mixed with the surface layer. Also, two leaching experiments were performed with repacked soil columns (loamy sand and sandy loam soil). The DEHP concentrations in the effluent did not exceed 1.0 microg L(-1), and after 200 mm of outflow less than 0.5% of the applied amount was recovered in the leachate in all soils but the sandy loam soil with homogeneous sludge application (up to 3.4% of the applied amount recovered). In the absence of macropore flow, DEHP in the leachate was primarily sorbed to mobilized dissolved organic macromolecules (DOM, 30.3 to 81.3%), while 2.4 to 23.6% was sorbed to mobilized mineral particles. When macropore flow occurred, this changed to 16.5 to 37.4% (DOM) and 36.9 to 40.6% (mineral particles), respectively. The critical combination for leaching of considerable amounts of DEHP was homogeneous sludge application and a continuous macropore structure.  相似文献   

5.
Environmental and health problems associated with the use of digested sewage sludge hinder its application and encourage the introduction of additional treatments such as composting and thermal drying. The aim of this paper is to assess the possibility of using three different types of sewage sludge (digested, composted and thermally dried) to improve soil fertility and enhance the transformation of an unproductive shrub land into a Mediterranean dehesa for grazing purposes and also to reduce wildfire risk. In total, 10t ha(-1) of dry matter of three types of sewage sludge were spread on the soil surface of 4x5m field plots, and then seeded with a mixture of grasses. Effects on soil fertility and plant growth were monitored over 2 years. The results show that all three types of sludge application had a significant effect on vegetation cover, herbaceous biomass (2767.7+/-716.1 and 1735.0+/-299.7kgha(-1) for digested sludge amended and control plots, respectively) and tree growth (0.41+/-0.108cmyear(-1) on amended trees, 14.6% more than control trees). This study proposes the use of multi-criteria analysis to identify the most suitable fertilization alternatives and to assist in the decision-making process of sludge recycling. Because of the high degree of uncertainty and conflicting objectives associated with these decisions, multi-criteria evaluation tools make a valuable contribution to decision-making processes concerning sewage sludge applications. According to multi-criteria results, the composted sludge alternative is the most suitable. This is because all the objectives are achieved: an improvement in the properties and functions of the soil with a positive vegetation response as well as minimal economic cost and risk of toxicity.  相似文献   

6.
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation.  相似文献   

7.
Th anti-seizure medication carbamazepine is often found in treated sewage effluent and environmental samples. Carbamazepine has been shown to be very persistent in sewage treatment, as well as ground water. Due to environmental persistence, irrigation with sewage effluent could result in carbamazepine contamination of surface and ground water. To determine the potential for leaching of carbamazepine, a series of adsorption and desorption batch equilibrium experiments were conducted on irrigated soils. It was found that carbamazepine adsorption to biosolid-amended (T) soils had a KD of 19.8 vs. 12.6 for unamended soil. Based on adsorption, carbamazepine leaching potential would be categorized as low. During desorption significant hysteresis was observed and KD increased for both soils. Desorption isotherms also indicate a potential for irreversibly bound carbamazepine in the T soil. Results indicate that initial removal of carbamazepine via adsorption from irrigation water is significant and that desorption characteristics would further limit the mobility of carbamazepine through the soil profile indicating that carbamazepine found in sewage effluent used for irrigation has a low leaching potential.  相似文献   

8.
Soils in the Mediterranean area are very prone to erosion due to the loss of organic matter and the consequent lack of protective vegetation. In this experiment a Mediterranean degraded soil with a 15% slope was amended at a rate of 250 t ha–1 wet weight with sewage sludge and with a mixture of sewage sludge and barley straw (70% carbon from sewage sludge and 30% from the straw) in order to study their influence on soil structure recovery and hence the soilss resistance to erosion processes. Both types of organic amendment led to an improvement in several soil properties (physical, biological, and microbiological) as a result of the spontaneous growth plant covering that became evident three months after amendment. This vegetation remained throughout the two years of the experiment and prevented the water erosion processes that normally precede soil degradation. Amendment by sewage sludge alone reduced soil loss by 80% compared with the control soil, while the mixture that included both sewage sludge and barley straw reduced losses by 84%, both reducing runoff by 57%. The amended soils showed increases in the percentage of stable aggregates, the levels of the total and water-soluble C fractions, microbial biomass C, basal respiration, and the activity of the different enzymes involved in the biogeochemical cycles of C, N, and P. The results confirm the usefulness of sewage sludge as an organic amendment for recovering damaged soils.  相似文献   

9.
Use of metal-rich sewage sludge as soil fertilizer may result in trace- metal contamination of soils. This study was conducted to evaluate the effects of long-term sludge application on trace-metal (Zn, Cu, Pb, and Ni) distribution and potential bioavailability in Nigerian soils under a tropical wet-dry climate. Total metal analyses, sequential chemical fractionation, and DTPA extractions were carried out on samples of control and sludge-amended pedons in Nigeria (a Rhodic Kandiustult and two Rhodic Kandiustalfs from Nigeria, respectively). The sewage sludge applied to the soils contained higher levels of Zn and Cu than Pb and Ni. The control pedon contained low levels of all four metals. Soil enrichment factors (EF) were calculated for each metal in the sludge-amended pedons. Compared with the control soil, the sludge-amended pedons showed elevated levels of Zn and Cu, reflecting the trace-metal composition of the sewage sludge. Zinc and Cu in the sludge-amended soils were strongly enriched at all depths in the profile, indicating that they had moved below the zone of sludge application. The sequential extraction and DTPA analyses indicated that the sludge-amended soils contained more readily extractable and bioavailable metal ions than the unamended soil.  相似文献   

10.
The project was designed to demonstrate the potential benefits of utilizing sewage sludge as a soil conditioner and fertilizer on Sassafras sandy loam soil. Aerobically digested, liquid sewage sludge was applied to the soil at rates of 0, 22.4, and 44.8 Mg of dry solids/ha for three consecutive years between 1978 and 1981. Groundwater, soil, and crop contamination levels were monitored to establish the maximum sewage solids loading rate that could be applied without causing environmental deterioration. The results indicate that application of 22.4 Mg of dry solids/ha of sludge is the upper limit to ensure protection of the groundwater quality on the site studied. Application rates at or slightly below 22.4 Mg of dry solids/ha are sufficient for providing plant nutrients for the dent corn and rye cropping system utilized in the study.  相似文献   

11.
In areas under intensive livestock farming and with high application rates of animal manure, inorganic and organic phosphorus (P) may be leached from soils. Since the contribution of these P compounds to P leaching may differ, it is important to determine the speciation of P in these soils. We determined the effect of various fertilization regimes on the P speciation in NaOH-Na2EDTA (ethylenediaminetetraacetic acid) and water extracts of acidic sandy soil samples from the top 5 cm of grassland with wet chemical analysis and 31P nuclear magnetic resonance (NMR) spectroscopy. These soils had been treated for a period of 11 years with no fertilizer (control), N (no P application), N-P-K, or different animal manures. Inorganic P was highly elevated in the NaOH-Na2EDTA extracts of the soils amended with N-P-K or animal manures, while organic P increased only in the soil treated with pig slurry. Water-extractable P showed a similar trend. As indicated by 31P NMR, orthophosphate monoesters were the main organic P compounds in all soils. Our results suggest that long-term applications of large amounts of P fertilizer and animal manures caused an accumulation of inorganic P, resulting in an increase of the potential risk related to mobilization of inorganic P in the top 5 cm of these soils.  相似文献   

12.
施用污泥堆肥对滩涂土壤理化性质的影响   总被引:2,自引:0,他引:2  
污泥堆肥中富含有机质营养成分,可改良土壤,同时要防止重金属和病原菌等可能引起的污染。为评价污泥堆肥作为土壤改良基质的可能性,本试验系统进行了上海曲阳水质净化厂污泥堆肥/滩涂土混配土的理化性质分析。研究结果表明,污泥堆肥与滩涂土混配后,土壤pH、电导率、阳离子交换量等理化指标得到改善;营养得到补充,肥力提高明显;混配土中未见病原菌污染问题,污泥堆肥施加比例控制在30%(干重计)以内时,也不存在重金属污染风险,混配土可以满足农用要求。  相似文献   

13.
Extremely sandy soils and poorly distributed high annual rainfall in the state of Florida contribute to significant leaching losses of nutrients from routine fertilization practices. A leaching column experiment was conducted to evaluate the leaching losses of nutrients when using currently available N, P, K blend fertilizers for young citrus tree fertilization. Fertilizer blends included NH4NO3, Ca(NO3)2, IBDU, IBDU plus Escote, Nutralene, Osmocote, and Meister. Following leaching of 1000 ml of water through soil columns, which simulates leaching conditions with 26 cm of rainfall, the amount of NO3 and NH4 recovered in the leachate from soil columns amended with an NH4NO3 blend accounted for 37% and 88% of the respective nutrients contained in the quantity of blend per column. The corresponding values for soil columns amended with a Ca(NO3)2 blend were 48% and 100%. Leraching losses of both NO3 (<3%) and NH4 (<4%) were drastically decreased when using controlled-release fertilizers. The recoveries of P and K in 1000 ml of leachate were 1.3% and 8%, respectively, of the nutrients added as Osmocote, which contained coated P and K sources. In the case of the rest of fertilizer blends, the recoveries of P and K in 1000 ml of leachate were as high as 52%–100% and 28%–100%, respectively. Therefore, controlled-release technology offers an important capability for minimizing leaching losses of nutrients.  相似文献   

14.
The efficiency of rhizobial inoculants produced in wastewater sludge used as a growth medium and as a carrier was compared with that of inoculants produced in yeast mannitol broth (YMB) medium and by using peat as a carrier. Alfalfa (Medicago sativa L.) plants were inoculated with solid and liquid Sinorhizobium meliloti inoculants and grown in pots containing two soil types (Kamouraska clay soil and Saint-André sandy soil). The effect of various levels of sludge amendment (60 and 120 kg N/ha) and nitrogen fertilizer (60 kg N/ ha) was also studied. The sludge-based inoculants showed the same symbiotic efficiency (nodulation and plant yield) as YMB-based inoculants. The inoculation increased the nodulation indexes from 4-6 to 8-12, and the rhizobial number from 10(3) (uninoculated soils) to 10(6)-10(7) cells/g in inoculated soils. However, the shoot dry weights and the nitrogen contents were not increased significantly by the inoculation. Applying sludge as an amendment enhanced the rhizobial number in soils from 10(3) to 10(4) cells/g and improved significantly the plant growth (shoot dry weights and nitrogen contents). This improvement increased with sludge rate and with the cut (three cuts). Compared with sludge, N fertilizer gave lower plant yields. The nodulation was not affected by sludge and N-fertilizer application. The texture and physico-chemical properties of soil were found to affect the yield and nitrogen content of the plants. In this study, macroelements and heavy metals were at acceptable levels and were not considered to be negative factors.  相似文献   

15.
The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam.  相似文献   

16.
The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.  相似文献   

17.
Maize (Zea mays L.) production in the smallholder farming areas of Zimbabwe is based on both organic and mineral nutrient sources. A study was conducted to determine the effect of composted cattle manure, mineral N fertilizer, and their combinations on NO3 concentrations in leachate leaving the root zone and to establish N fertilization rates that minimize leaching. Maize was grown for three seasons (1996-1997, 1997-1998, and 1998-1999) in field lysimeters repacked with a coarse-grained sandy soil (Typic Kandiustalf). Leachate volumes ranged from 480 to 509 mm yr(-1) (1395 mm rainfall) in 1996-1997, 296 to 335 mm yr(-1) (840 mm rainfall) in 1997-1998, and 606 to 635 mm yr(-1) (1387 mm rainfall) in 1998-1999. Mineral N fertilizer, especially the high rate (120 kg N ha(-1)), and manure plus mineral N fertilizer combinations resulted in high NO3 leachate concentrations (up to 34 mg N L(-1)) and NO3 losses (up to 56 kg N ha(-1) yr(-1)) in 1996-1997, which represent both environmental and economic concerns. Although the leaching losses were relatively small in the other seasons, they are still of great significance in African smallholder farming where fertilizer is unaffordable for most farmers. Nitrate leaching from sole manure treatments was relatively low (average of less than 20 kg N ha(-1) yr(-1)), whereas the crop uptake efficiency of mineral N fertilizer was enhanced by up to 26% when manure and mineral N fertilizer were applied in combination. The low manure (12.5 Mg ha(-1)) plus 60 kg N ha(-1) fertilizer treatment was best in terms of maintaining dry matter yield and minimizing N leaching losses.  相似文献   

18.
Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows.  相似文献   

19.
The prospect of using wastewater containing high loads of soluble organic matter (OM) for removing residual agricultural chemicals (fertilizer, pesticide, or herbicide) in farm soil, although promising, could have adverse effects on soil agricultural quality as a result of development of redoximorphic features in the soil profile. In this study, the effect of organic carbon supplement for bioremediation of residual fertilizer nitrate on soil properties, redox potential (Eh), pH, and metal ion mobilization was studied using sandy soils packed in columns. The study was included in a general project, described elsewhere (Ugwuegbu et al., 2000), undertaken to evaluate use of controlled water table management (WTM) systems to supply organic carbon for creating a reduced environment conducive to denitrification of residual fertilizer nitrate leaching from the farm to subsurface water. The columns were subjected to subirrigation with water containing soluble organic carbon in the form of glucose. The work was carried out in two experimental setups and the long-term effect of a range of glucose concentrations on the Eh, pH, and soluble levels of Fe and Mn was investigated. From the results obtained, it could be concluded that excessive organic carbon supplement to soil can have adverse effects on soil quality and that Eh and soluble Fe are the two most practical parameters for monitoring soil health during treatment of farm chemicals.  相似文献   

20.
Residual soil nitrate after potato harvest   总被引:1,自引:0,他引:1  
Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada. Soil nitrate contents were measured to a 0.90-m depth in three treatments of N fertilization (0, 100, and 250 kg N ha(-1)) at two on-farm sites in 1995, and in four treatments of N fertilization (0, 50, 100, and 250 kg N ha(-1)) at four sites for each of two years (1996 and 1997) with and without supplemental irrigation. Residual soil NO3-N content increased from 33 kg NO3-N ha(-1) in the unfertilized check plots to 160 kg NO3-N ha(-1) when 250 kg N ha(-1) was applied. Across N treatments, residual soil NO3-N contents ranged from 30 to 105 kg NO3-N ha(-1) with irrigation and from 30 to 202 kg NO3-N ha(-1) without irrigation. Residual soil NO3-N content within the surface 0.30 m was related (R2 = 0.94) to the NO3-N content to a 0.90-m depth. Estimates of residual soil NO3-N content at the economically optimum nitrogen fertilizer application (Nop) ranged from 46 to 99 kg NO3-N ha(-1) under irrigated conditions and from 62 to 260 kg NO3-N ha(-1) under nonirrigated conditions, and were lower than the soil NO3-N content measured with 250 kg N ha(-1). We conclude that residual soil NO3-N after harvest can be maintained at a reasonable level (<70 kg NO3-N ha(-1)) when N fertilization is based on the economically optimum N application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号