共查询到20条相似文献,搜索用时 15 毫秒
1.
Miller JJ Olson EC Chanasyk DS Beasley BW Larney FJ Olson BM 《Journal of environmental quality》2006,35(4):1279-1290
Fresh beef cattle (Bos taurus) manure has traditionally been applied to cropland in southern Alberta, but there has been an increase in application of composted manure to cropland in this region. However, the quality of runoff under fresh manure (FM) versus composted manure (CM) has not been investigated. Our objective was to compare runoff quality under increasing rates (0, 13, 42, 83 Mg ha(-1) dry wt.) of FM and CM applied for two consecutive years to a clay loam soil cropped to irrigated barley (Hordeum vulgare L.). We determined total phosphorus (TP), particulate phosphorus (PP), dissolved reactive phosphorus (DRP), total nitrogen (TN), NH4-N, and NO3-N concentrations and loads in runoff after one (1999) and two (2000) applications of FM and CM. We found significantly (P < or = 0.05) higher TP, DRP, and NH4-N concentrations, and higher DRP and TN loads under FM than CM after 2 yr of manure application. The TP loads were also higher under FM than CM at the 83 Mg ha(-1) rate in 2000, and DRP loads were higher for FM than CM at this high rate when averaged over both years. Application rate had a significant effect on TP and DRP concentrations in runoff. In addition, the slope values of the regressions between TP and DRP in runoff versus application rate were considerably higher for FM in 2000 than for FM in 1999, and CM in both 1999 and 2000. Significant positive relationships were found for TP and DRP in runoff versus soil Kelowna-extractable P and soil water-extractable P for FM and CM in 2000, indicating that interaction of runoff with the soil controlled the release of P. Total P and DRP were the variables most affected by the treatments. Overall, our study found that application of CM rather than FM to cropland may lower certain forms of P and N in surface runoff, but this is dependent on the interaction with year, application rate, or both. 相似文献
2.
Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer 总被引:3,自引:0,他引:3
Tabbara H 《Journal of environmental quality》2003,32(3):1044-1052
Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer. 相似文献
3.
Repeated manure application can lead to excessive soil test P (STP) levels and increased P concentration in runoff, but also to improved water infiltration and reduced runoff. Research was conducted to evaluate soil P tests in prediction of P concentration in runoff and to determine the residual effects of composted manure on runoff P loss and leaching of P. The research was conducted from 2001 to 2004 under natural runoff events with plots of 11-m length. Low-P and high-P compost had been applied during the previous 3 yr, resulting in total applications of 750 and 1150 kg P ha(-1). Bray-P1 in the surface 5 cm of soil was increased from 16 to 780 mg kg(-1) with application of high-P compost. Runoff and sediment losses were 69 and 120% greater with no compost than with residual compost treatments. Runoff P concentration increased as STP increased, but much P loss occurred with the no-compost treatment as well. Agronomic soil tests were predictive of mean runoff P concentration, but increases in STP resulted in relatively small increases in runoff P concentration. Downward movement of P was not detected below 0.3 m. In conclusion, agronomic soil tests are useful in predicting long-term runoff P concentration, and risk of P loss may be of concern even at moderate soil P levels. The residual effect of compost application in reducing sediment and runoff loss was evident more than 3 yr after application and should be considered in P indices. 相似文献
4.
Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications 总被引:6,自引:0,他引:6
Long-term application of phosphorus (P) with animal manure in amounts exceeding removal with crops leads to buildup of P in soil and to increasing risk of P loss to surface water and eutrophication. In most manures, the majority of P is held within inorganic forms, but in soil leachates organic P forms often dominate. We investigated the mobility of both inorganic and organic P in profile samples from a noncalcareous sandy soil treated for 11 yr with excessive amounts of pig slurry, poultry manure, or poultry manure mixed with litter. Solution 31P nuclear magnetic resonance spectroscopy was used to characterize NaOH-EDTA-extractable forms of P, corresponding to 64 to 93% of the total P concentration in soil. Orthophosphate and orthophosphate monoesters were the main P forms detected in the NaOH-EDTA extracts. A strong accumulation of orthophosphate monoesters was found in the upper layers of the manure-treated soils. For orthophosphate, however, increased concentrations were found down to the 40- to 50-cm soil layers, indicating a strong downward movement of this P form. This was ascribed to the strong retention of orthophosphate monoesters by the solid phase of the soil, preventing orthophosphate sorption and facilitating downward movement of orthophosphate. Alternatively, mineralization of organic P in the upper layers of the manure-treated soils may have generated orthophosphate, which could have contributed to the downward movement of the latter. Leaching of inorganic P should thus be considered for the assessment and the future management of the long-term risk of P loss from soils receiving large amounts of manure. 相似文献
5.
Daverede IC Kravchenko AN Hoeft RG Nafziger ED Bullock DG Warren JJ Gonzini LC 《Journal of environmental quality》2004,33(4):1535-1544
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils. 相似文献
6.
Shuman LM 《Journal of environmental quality》2002,31(5):1710-1715
Intensively managed golf courses are perceived by the public as possibly adding nutrients to surface waters via surface transport. An experiment was designed to determine the transport of nitrate N and phosphate P from simulated golf course fairways of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.]. Fertilizer treatments were 10-10-10 granular at three rates and rainfall events were simulated at four intervals after treatment (hours after treatment, HAT). Runoff volume was directly related to simulated rainfall amounts and soil moisture at the time of the event and varied from 24.3 to 43.5% of that added for the 50-mm events and 3.1 to 27.4% for the 25-mm events. The highest concentration and mass of phosphorus in runoff was during the first simulated rainfall event at 4 HAT with a dramatic decrease at 24 HAT and subsequent events. Nitrate N concentrations were low in the runoff water (approximately 0.5 mg L-1) for the first three runoff events and highest (approximately 1-1.5 mg L-1) at 168 HAT due to the time elapsed for conversion of ammonia to nitrate. Nitrate N mass was highest at the 4 and 24 HAT events and stepwise increases with rate were evident at 24 HAT. Total P transported for all events was 15.6 and 13.8% of that added for the two non-zero rates, respectively. Total nitrate N transported was 1.5 and 0.9% of that added for the two rates, respectively. Results indicate that turfgrass management should include applying minimum amounts of irrigation after fertilizer application and avoiding application before intense rain or when soil is very moist. 相似文献
7.
Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge 总被引:1,自引:0,他引:1
Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates. 相似文献
8.
Municipal biosolids are typically not used on the steepest of forested slopes in the U.S. Pacific Northwest. The primary concern in using biosolids on steep slopes is movement of biosolids particles and soluble nutrients to surface waters during runoff events. We examined the pattern and extent of P and N runoff from a perennial stream draining a small, forested 21.4-ha watershed in western Washington before and after biosolids application. In this study, we applied biosolids at a rate of 13.5 Mg ha(-1) (700 kg N ha(-1) and 500 kg P ha(-1)) to 40% of the watershed following nearly 1.5 years of pre-application water sampling and 1.5 years thereafter. There was no evidence of direct runoff of P or N from biosolids into surface water. Elevated surface water discharge did not change the concentration of PO4-P, biologically available phosphorus (BAP), bioavailable particulate phosphorus (BPP), or total P nor did it affect the concentration-discharge relationship. Some instances of total P concentrations exceeding the USEPA surface water standard of 0.1 mg L(-1) were observed following biosolids application. However, total P in 27 Creek was predominately in particulate form and not labile, suggesting that detritus moving into the main creek channel and ephemeral drainage courses may be the principal P source. Ammonium N concentrations in runoff water were consistent before and after biosolids application, ranging from below detection limits (0.01 mg L(-1)) to 0.1 mg L(-1); no concentration-discharge relationship existed. Biosolids application changed the 27 Creek concentration-discharge relationship for NO3(-)-N. Before application, no relationship existed. Beginning nine months after biosolids application, increases in discharge were positively related to increases in NO3(-)-N concentrations. Nitrate concentrations in runoff following biosolids application were approximately 10 times less than the USEPA drinking water standard of 10 mg L(-1). 相似文献
9.
Koopmans GF Chardon WJ Dolfing J Oenema O van der Meer P van Riemsdijk WH 《Journal of environmental quality》2003,32(1):287-295
In areas under intensive livestock farming and with high application rates of animal manure, inorganic and organic phosphorus (P) may be leached from soils. Since the contribution of these P compounds to P leaching may differ, it is important to determine the speciation of P in these soils. We determined the effect of various fertilization regimes on the P speciation in NaOH-Na2EDTA (ethylenediaminetetraacetic acid) and water extracts of acidic sandy soil samples from the top 5 cm of grassland with wet chemical analysis and 31P nuclear magnetic resonance (NMR) spectroscopy. These soils had been treated for a period of 11 years with no fertilizer (control), N (no P application), N-P-K, or different animal manures. Inorganic P was highly elevated in the NaOH-Na2EDTA extracts of the soils amended with N-P-K or animal manures, while organic P increased only in the soil treated with pig slurry. Water-extractable P showed a similar trend. As indicated by 31P NMR, orthophosphate monoesters were the main organic P compounds in all soils. Our results suggest that long-term applications of large amounts of P fertilizer and animal manures caused an accumulation of inorganic P, resulting in an increase of the potential risk related to mobilization of inorganic P in the top 5 cm of these soils. 相似文献
10.
Historically, manure has been recognized as an excellent soil amendment that can improve soil quality and provide nutrients for crop production. In areas of high animal density, however, the potential for water pollution resulting from improper storage or disposal of manure may be significant. The objective of this study was to determine the P balance of cultivated soils under barley (Hordeum vulgare L.) production that have received long-term annual manure amendments. Nonirrigated soils at the study site in Lethbridge, AB, Canada, have received 0, 30, 60, or 90 Mg manure ha(-1) (wet wt. basis) while irrigated plots received 0, 60, 120, and 180 Mg ha(-1) annually for 16 yr. The amount of P removed in barley grain and straw during the 16-yr period was between 5 and 18% of the cumulative manure P applied. There was a balance between P applied in manure and P recovered in crops and soils (to the 150-cm depth) of nonirrigated plots during the 16-yr study. In irrigated plots, as much as 1.4 Mg P ha(-1) added (180 Mg ha(-1) yr(-1) treatment) was not recovered over 16 yr, and was probably lost through leaching. The risk of ground water contamination with P from manure was greater in irrigated than nonirrigated plots that have received long-term annual manure amendments. Manure application rates should be reduced in nonirrigated and irrigated plots to more closely match manure P inputs to crop P requirements. 相似文献
11.
Westermann DT Bjorneberg DL Aase JK Robbins CW 《Journal of environmental quality》2001,30(3):1009-1015
Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff. 相似文献
12.
Manure application supplies plant nutrients, but also leads to trace element accumulation in soil. This study investigated total and EDTA-extractable B, Cd, Co, Cu and Zn in soil after 25 annual manure applications. The residual effect of 14 annual manure applications followed by 11 yr with no applications was also investigated. Manure was applied at 0, 30, 60 and 90 Mg ha(-1) yr(-1) (wet weight) under rainfed (treatments Mr0, Mr30, Mr60, and Mr90) and at 0, 60, 120 and 180 Mg ha(-1) yr(-1) under irrigated conditions (Mi0, Mi60, Mi120, and Mi180). The manure applications had no significant effect on soil B, Cd and Co content under both rainfed and irrigated conditions, but significantly increased total Cu and Zn content under irrigated conditions with Zn in Mi120 and Mi180 reaching the lower maximum concentration (MAC) level set by the European Community. Manure application also significantly increased EDTA-extractable Cd and Zn content in soil. Up to 27% of the total Cd (0.156 mg kg(-1)) and 21% of total Zn (38 mg kg(-1)) are found in EDTA-extractable form (Mi180 at 0-15 cm). EDTA-extractable Cd and Zn content was also significantly elevated in the irrigated residual plots due to the higher manure rates used. Thus, the impacts of cattle manure application on trace elements in soil are long lasting. Elevated Cd and Zn are a concern as other studies have linked them with certain types of cancers and human illnesses. 相似文献
13.
Phosphorus saturation in spodosols impacted by manure 总被引:1,自引:0,他引:1
Significant amounts of phosphorus (P) accumulate in soils receiving animal manures that could eventually result in unacceptable concentrations of dissolved P loss through surface runoff or subsurface leaching. The degree of phosphorus saturation (DPS) relates a soil's extractable P to its P sorbing capacity, and is reportedly a predictor of the P likely to be mobilized from a system. A DPS value (DPS-1) was derived that expressed the percentage of Mehlich 1-extractable P to the sorbing capacity of a Spodosol (expressed as the sum of oxalate-extractable Fe and Al). Values of DPS-1 were determined in various horizons of soil in current and abandoned dairy systems in South Florida's Lake Okeechobee watershed to assess P release potential. Land use within the dairies was classified as highly impacted by cattle (intensive and holding), and minimally impacted by cattle (pasture, forage, or native) areas. The A and E horizon of soils in heavily manure-impacted intensive and holding areas for both active and abandoned dairies generally had higher DPS-1 values than the pasture, forage, and native area soils, which were minimally impacted by manure. Degree of P saturation was also calculated as a percentage of Mehlich 1-extractable P to the sum of Mehlich 1-extractable Fe and Al (DPS-2). Both DPS-1 and DPS-2 were shown to be significantly (P = 0.0001) related to water-extractable P for all soil horizons, suggesting that either index can be used as an indicator for P loss potential from a soil. 相似文献
14.
Nutrient loading on impaired watersheds can be reduced through export of sod grown with manure and export of composted manure for turf production on other watersheds. Effects of the sod and manure exports on receiving watersheds were evaluated through monitoring of total dissolved phosphorus (TDP) and N concentrations and losses in runoff from establishing turf. Three replications of seven treatments were established on an 8.5% slope of a Booneville soil (loamy-skeletal, mixed, superactive Pachic Argicryolls). Three treatments comprised imported 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod grown with composted dairy manure (382 or 191 kg P ha(-1)) or fertilizer (50 kg P ha(-1)). Three treatments were sprigged with Tifway and top-dressed with either composted manure (92 or 184 kg P ha(-1)) or fertilizer (100 kg P ha(-1)). The control was established bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon]. During eight fall rain events, mean TDP concentration in runoff (7.8 mg L(-1)) from sprigged Tifway top-dressed with manure (84 kg P ha(-1)) was 1.6 times greater than sod imported with 129 kg manure P ha(-1). During the first fall event, mass losses of TDP (232 mg m(-2)) and total Kjeldahl nitrogen (TKN) (317 mg m(-2)) from sprigged treatments top-dressed with manure or fertilizer were nearly three times greater than manure-grown sod. Percentages of manure P lost as TDP in runoff from imported sod were 33% of percentages lost from sprigged treatments top-dressed with manure. Sod grown with manure P rates of 190 kg P ha(-1) can be imported without increasing runoff losses of TDP compared with conventional fertilization of establishing turfgrass. 相似文献
15.
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils. 相似文献
16.
Greenhouse gas emissions and soil indicators four years after manure and compost applications 总被引:7,自引:0,他引:7
Understanding how carbon, nitrogen, and key soil attributes affect gas emissions from soil is crucial for alleviating their undesirable residual effects that can linger for years after termination of manure and compost applications. This study was conducted to evaluate the emission of soil CO2, N2O, and CH4 and soil C and N indicators four years after manure and compost application had stopped. Experimental plots were treated with annual synthetic N fertilizer (FRT), annual and biennial manure (MN1 and MN2, respectively), and compost (CP1 and CP2, respectively) from 1992 to 1995 based on removal of 151 kg N ha(-1) yr(-1) by continuous corn (Zea mays L.). The control (CTL) plots received no input. After 1995, only the FRT plots received N fertilizer in the spring of 1999. In 1999, the emissions of CO2 were similar between control and other treatments. The average annual carbon input in the CTL and FRT plots were similar to soil CO2-C emission (4.4 and 5.1 Mg C ha(-1) yr(-1), respectively). Manure and compost resulted in positive C and N balances in the soil four years after application. Fluxes of CH4-C and N2O-N were nearly zero, which indicated that the residual effects of manure and compost four years after application had no negative influence on soil C and N storage and global warming. Residual effects of compost and manure resulted in 20 to 40% higher soil microbial biomass C, 42 to 74% higher potentially mineralizable N, and 0.5 unit higher pH compared with the FRT treatment. Residual effects of manure and compost on CO2, N20, and CH4 emissions were minimal and their benefits on soil C and N indicators were more favorable than that of N fertilizer. 相似文献
17.
Vietor DM Griffith EN White RH Provin TL Muir JP Read JC 《Journal of environmental quality》2002,31(5):1731-1738
Regulatory mandates have increased demand for best management practices (BMPs) that will reduce nutrient loading on watersheds impaired by excess manure P and N. Export of manure P and N in turfgrass sod harvests is one BMP under consideration. This study quantified amounts and percentages of P and N removed in a sod harvest for different rates of manure and inorganic P and N. Six treatments comprised an unfertilized control, two manure rates with and without supplemental inorganic N, and inorganic P and N only. The treatments were applied to 'Tifway' bermudagrass (Cynodon dactylon L. x C. transvaalensis Burtt-Davey), '609' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], and 'Reveille' bluegrass (Poa arachnifera Torr. x P. pratensis L.) under field conditions. Comparisons among treatments revealed small variations of P and N content in clippings and the plant component of sod, but large variations in the soil component of sod for each turf species. In addition, 2 to 10 times more P and 1.3 to 5 times more N was removed in soil than in plant components of sod for the two manure rates with and without added inorganic N. Percentages of applied P and N in harvested sod were similar for the two manure rates with and without added N for each species, but differed among turf species for each P (46 to 77%) and N (36 to 47%). The large amounts and percentages of manure P and N removed by sod harvest support the feasibility of this BMP in efforts to reduce nutrient loads on watersheds. 相似文献
18.
There is growing interest in evaluating the effects of corn silage harvesting methods on erosion control. Increasing the silage cutting height will increase residue cover and could conceivably minimize off-site migration of sediments compared with conventional silage harvesting. The effects of residue level and manure application timing on runoff and sediment losses from no-till corn were examined. Treatments included conventional corn grain (G) and silage (SL) and nonconventional, high-cut (60-65 cm) silage (SH). Corn harvesting treatments were subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm/h; 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots collected, and a subsample analyzed for sediment concentration and aggregate size distribution. Runoff volume was inversely related to residue cover. Manure addition to silage plots reduced spring runoff by 71 to 88%, attributable to an increase in soil organic matter content, compared with SH-N and SL-N. Differences in sediment concentration between SH and SL were not significant. For silage plots, spring-applied manure had the greatest influence on sediment export reducing it by 84 to 93% in spring runoff compared with corresponding N plots. Sediment loads were also 85 to 97% lower from SH-S compared with SL-N in all four seasons. Except for spring 2003, sediment export was lower from G compared with SL. The combination of manure and higher residue associated with high-cut silage often lowered sediment export compared with low-cut silage. Nearly identical aggregate size distributions were observed in sediments from SH and SL plots. High residue levels combined with spring-applied manure led to enrichment in the clay-sized fraction of runoff sediment. Recently applied manure and higher residue levels achieved by high-cutting silage can substantially lower sediment losses in spring runoff when soil is most susceptible to erosion. 相似文献
19.
Gaudreau JE Vietor DM White RH Provin TL Munster CL 《Journal of environmental quality》2002,31(4):1316-1322
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass. 相似文献
20.
Smith DR Moore PA Griffis CL Daniel TC Edwards DR Boothe DL 《Journal of environmental quality》2001,30(3):992-998
Phosphorus (P) runoff from fields fertilized with swine (Sus scrofa domesticus) manure may contribute to eutrophication. The objective of this study was to evaluate the effect of aluminum sulfate (alum) and aluminum chloride applications to swine manure on P runoff from small plots cropped to tall fescue (Festuca arundinacea Shreb.). There were six treatments in this study: (i) unfertilized control plots, (ii) untreated manure, (iii) manure with alum at 215 mg Al L(-1), (iv) manure with aluminum chloride at 215 mg Al L(-1), (v) manure with alum at 430 mg Al L(-1), and (vi) manure with aluminum chloride at 430 mg Al L(-1). Manure application rates were equivalent to approximately 125 kg N ha(-1). Alum and aluminum chloride additions lowered soluble reactive phosphorus (SRP) levels from about 130 mg P L(-1) to approximately 30 mg P L(-1) at low rates. At high rates, SRP levels in swine manure were around 1 mg P L(-1). Soluble reactive P concentrations in runoff were 5.50, 3.66, 3.00, 0.87, 0.87, and 0.55 mg P L(-1), for normal manure, low alum, low aluminum chloride, high alum, high aluminum chloride, and unfertilized control plots, respectively. Hence, high alum and aluminum chloride reduced SRP concentrations in runoff by 84% and were not statistically different from SRP concentrations in runoff from unfertilized control plots. These data indicate that treating swine manure with alum or aluminum chloride could result in significant reductions in nonpoint-source P runoff. 相似文献