首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice (Oryza sativa L.) plants were cultivated in an experimental field and separated at harvest into different components, including polished rice, rice bran, hull, straw, and root. The contents of iodine in these components and the soil were determined by inductively coupled plasma-mass spectrometry and radiochemical neutron activation analysis, respectively. Iodine content varied by more than three orders of magnitude among the plant components. Mean concentration of iodine in the entire plants was 20 mg kg(-1) dry weight, and the concentration of iodine in the surface soil (0-20 cm depth) was 48 mg kg(-1). The highest concentration of iodine (53 mg kg(-1) dry weight) was measured in root and the lowest concentration (0.034 mg kg(-1) dry weight) in polished rice. While the edible component (polished rice) accounted for 32% of the total dry weight, it contained only 0.055% of iodine found in the entire rice plants. Atmospheric gaseous iodine (5.9 ng m(-3)) was estimated to contribute <0.2% of the total iodine content in the biomass of rice plants; therefore nearly all of the iodine in the rice plants was a result of the uptake of iodine from the soil. The content of iodine in the aboveground part of rice plants was 16 mg kg(-1) dry weight and the percentage of iodine transferred per cropping from the soil into the aboveground biomass corresponded to 0.27% (20 mg m(-2)) of the upper soil layer content.  相似文献   

2.
Speciation of copper-humic substances (HS) in the electrokinetic remediation (EKR) of a contaminated soil was studied by in situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. The least-square fits of the XANES spectra suggested that the main Cu species in the contaminated soil were Cu-HS (50%), CuCO(3) (28%), Cu(2)O (11%), and CuO (11%). The Cu-HS in the contaminated soil possessed equatorial and axial Cu-O bond distances of 1.94 and 2.17 A with coordination numbers (CNs) of 3.6 and 1.4, respectively. In the EKR process, the axial Cu-O bond distance in the Cu-HS complexes was increased by 0.15 A, which might be due to a ligand exchange of the Cu-HS with H(2)O molecules in the electrolyte. After 180 min of EKR, about 50% of the Cu-HS complexes (or 24% of total Cu) in the soil were dissolved and formed [Cu(H(2)O)(6)](2+) in the electrolyte, 71% (or 17% of total Cu in the soil) of which were migrated to the cathode under the electric field (5 V/cm). This work exemplifies the use of in situ EXAFS and XANES spectroscopies for speciation studies of Cu chelated with HS in the contaminated soil during EKR.  相似文献   

3.
Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (~8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered.  相似文献   

4.
Soil pollution by lead, zinc, cadmium and copper was characterized in the mine tailings and surrounding soils (arable and pasture lands) of an old Spanish Pb-Zn mine. Sixty soil samples were analyzed, determining the total metal concentration by acid digestion and the chemical fractionation of Pb and Zn by the modified BCR sequential extraction method. Samples belonging to mine waste areas showed the highest values, with mean concentrations of 28,453.50 mg kg(-1) for Pb, 7000.44 mg kg(-1) for Zn, 20.57 mg kg(-1) for Cd and 308.48 mg kg(-1) for Cu. High concentrations of Pb, Zn and Cd were found in many of the samples taken from surrounding arable and pasture lands, indicating a certain extent of spreading of heavy metal pollution. Acidic drainage and wind transport of dust were proposed as the main effects causing the dispersion of pollution. Sequential extraction showed that most of the Pb was associated with non-residual fractions, mainly in reducible form, in all the collected samples. Zn appeared mainly associated with the acid-extractable form in mine tailing samples, while the residual form was the predominant one in samples belonging to surrounding areas. Comparison of our results with several criteria reported in the literature for risk assessment in soils polluted by heavy metals showed the need to treat the mine tailings dumped in the mine area.  相似文献   

5.
Sulfide-bearing mine tailings are a serious environmental problem around the world. In this study, the vertical distribution and speciation of Zn and Pb in the fine-grained flotation residues of a former sulfide ore mine in Germany were investigated to assess the inorganic weathering processes that effect the environmental risk arising from this site. Total metal contents were determined by X-ray fluorescence spectroscopy (XRF). Mobilizable fractions of Zn, Pb, Fe, and Mn were quantified by sequential chemical extractions (SCE). Furthermore, the speciation of Zn was analyzed by Zn K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) to identify the residual Zn species. The variations in pH and inorganic C content show an acidification of the topsoil to pH 5.5. EXAFS results confirm that Zn is mainly bound in sphalerite in the subsoil and weathering reactions lead to a redistribution of Zn in the topsoil. A loss of 35% Zn and S from the topsoil compared with the parent material with 10 g kg-1 Zn and neutral pH has been observed. If acidification proceeds it will lead to a significant release of Zn, S, and Pb to the ground water. In contrast to Zn, Pb is enriched in the mobile fraction of the topsoil by more than a factor of two compared with the subsoil which contains a total of 2 g kg-1 Pb. Thus, the high bioavailability of Pb and the potential for Pb uptake by plants and animals currently represent the most severe threat for environmental health.  相似文献   

6.
7.
Methods for speciation of metals in soils: a review   总被引:1,自引:0,他引:1  
  相似文献   

8.
The immobilization of Pb in contaminated soils as pyromorphite [Pb(5)(PO(4))(3)Cl, OH, F] through the addition of various phosphate amendments has gained much attention in the remediation community. However, it is difficult to fully determine the speciation and amount of soil Pb converted to pyromorphite by previously employed methods, such as selective sequential extraction procedures and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, which often lead to erroneous results in these non-equilibrated and heterogeneous systems. Statistical analysis by linear combination fitting (LCF) applied to X-ray absorption fine structure (XAFS) spectroscopic data of Pb-contaminated soil samples relative to known Pb reference material provides direct, in situ evidence of dominate Pb species in the amended soils without chemical or physical disruption to the Pb species as well as a weighted quantification output. The LCF-XAFS approach illustrated that pyromorphite concentration ranged from 0% (control soil) to 45% (1% phosphoric acid amendment, residence time of 32 mo) relative to the total Pb concentration. The Pb speciation in the nonamended control soil included Pb-sulfur species (galena + angelsite = 53%), adsorbed Pb (inner-sphere + outer-sphere + organic-bound = 45%), and Pb-carbonate phases (cerussite + hydrocerussite = 2%). The addition of P promoted pyromorphite formation and the rate of formation increased with increasing P concentration (up to 45%). The supplemental addition of an iron amendment as an iron-rich byproduct with triple superphosphate (TSP) enhanced pyromorphite formation relative to independent TSP amendment of like concentrations (41 versus 29%). However, the amendment of biosolids and biosolids plus TSP observed little pyromorphite formation (1-16% of total Pb), but a significant increase of sorbed Pb was determined by LCF-XAFS.  相似文献   

9.
We investigated the effect of 4 yr of aging of a noncalcareous soil contaminated with filter dust from a brass foundry (80% w/w ZnO, 15% w/w Cu0.6Zn0.4) on the chemical extractability of Zn and Cu and their uptake by barley (Hordeum vulgare L.), pea (Pisum sativum L.), and sunflower (Helianthus annus L.). Pot experiments were conducted with the freshly contaminated soil (2250 mg kg-1 Zn; 503 mg kg-1 Cu), with the contaminated soil aged for 4 yr in the field (1811 mg kg-1 Zn; 385 mg kg-1 Cu), and with the uncontaminated control soil (136 mg kg-1 Zn; 32 mg kg-1 Cu). In comparison with the uncontaminated soil, the growth of barley and pea was clearly reduced in both contaminated soils, while toxicity symptoms did not systematically vary from the freshly contaminated to the 4 yr aged soil. The sunflower did not grow in the contaminated soils. The slow oxidative dissolution of the brass platelets led to an increase in the solubility and the plant uptake of Cu from the freshly contaminated to the 4 yr aged soil. In an earlier study, we found that the fine-grained ZnO dissolved in the field soil within 9 mo and that about half of the released Zn was incorporated into a layered double hydroxide phase and about half was adsorbed to the soil matrix. These changes in Zn speciation did not lead to a reduction of the Zn contents in the shoots and roots of barley and pea grown in the aged soil as compared with the freshly contaminated soil.  相似文献   

10.
Lead poisoning of waterfowl from direct ingestion of wetland mine tailings has been reported at the Coeur d'Alene River basin in Idaho. A greenhouse study was conducted to evaluate the effects of surface applications of amendments on lead bioavailability in the tailings. Treatments included sediment only, and sediment with three different surface amendments: (i) biosolids compost plus wood ash, (ii) compost + wood ash + a low SO4(2-) addition as K2SO4, and (iii) compost + wood ash + a high SO4(2-) addition. Measured variables included growth and tissue Pb, Zn, and Cd concentration of arrowhead (Sagittaria latifolia Willd.) and cattail (Typha latifolia L.) and soil pH, redox potential (Eh), pore water Pb, Pb speciation by X-ray absorption spectroscopy, and in vitro Pb bioavailability. The compost + ash amendment alleviated phytotoxicity for both plant species. Bioavailability of Pb as measured by a rapid in vitro extract decreased by 24 to 34% (over control) in the tailings directly below the amendment layer in the compost + SO4 treatments. The ratio of acid volatile sulfide (AVS) to simultaneously extracted metals (SEM) also indicated a reduction in Pb bioavailability (1:40 control, 1:20 compost, 1:8 compost + low SO4, and 1:3 compost + high SO4). Extended X-ray adsorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopy data indicated that lead sulfide was greater after 99 d in the treatments that included additions of sulfate. These results indicated that, under reducing conditions, surface amendments of compost + wood ash (with or without sulfate) decreased the bioavailability of Pb in metal-contaminated mine tailings.  相似文献   

11.
Three chemicals, ferrous sulfate (Fe-sul), calcium oxide (CaO), and aluminum sulfate (alum), were used to stabilize phosphorus (P) in fresh, anaerobically digested sewage sludge (FSS). The chemically stabilized sludge materials and biosolids compost (BSC) were compared with the FSS with respect to water-soluble phosphorus (WSP) content in its inorganic (WSP(i)) and organic (WSP(o)) forms as well as water-soluble organic carbon (DOC). Solid-state P speciation was further probed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray elemental spectrometry (EDXS). Water-soluble P was effectively controlled by a wide range of Fe-sul or CaO additions to the sludge (Ca to P ratio = 3.47-17.72, Fe to P ratio = 1.01-16.53), but by only a narrow range (Al to P ratio = 1.04-2.87) of alum addition. The WSP content in the BSC was also depressed, but to a lesser extent. The pH in the treated sludge ranged from 3.0 to 12.5 and served as a key factor to control P chemistry. No correlation was observed between DOC and WSP(o). No crystallized Ca-P minerals were detected in the CaO-stabilized sludge, but brushite crystallization seemed to be obtained by low addition of Fe-sul and alum. Variscite and strengite crystallization was obtained following high addition of Fe-sul or alum, as detected by XRD and SEM-EDXS. Adsorption of P by newly formed Fe-hydroxide seems to play an important role in the Fe-sul-stabilized sludge. We concluded that administration of the tested chemicals at the proper rate can effectively reduce the hazard of P release and leaching from sludge.  相似文献   

12.
Information on the spatial distribution and speciation of metals in nonhyperaccumulator plants is lacking. This study used synchrotron X-ray fluorescence (SXRF) compositional imaging to investigate the spatial distribution of Ni, Mn, Cu, Zn, and Fe in annual rings of black willow (Salix nigra L.) collected from a metal-contaminated area, and used X-ray absorption spectroscopy (XAS) to investigate Ni and Mn speciation in regions of the annual rings with elevated Ni concentrations. Annual rings were recollected in early 2003 from an individual known to be enriched with Ni from previous studies. Compositional imaging showed Ni and associated co-contaminants conservatively located in an annual ring. When compared with a corresponding photomicrograph, SXRF compositional images showed that metals were sharply constrained by the boundaries of the annual ring, indicating a sudden onset and cessation of uptake, and a lack of post-growth mobility of the metals. There was a particularly strong correlation between Ni and Mn in the metal-enriched annual ring (r = 0.8822), which suggested similar transport and binding behavior of these elements. X-ray absorption spectroscopy showed Ni and Mn to be present in the 2+ oxidation state. X-ray absorption near edge structure spectroscopy (XANES) fingerprinting of localized, highly Ni-enriched regions within the lumen of willow xylem vessels found similarities with Ni-pectic acid complexes, Ni-histidine, and NiSO4.  相似文献   

13.
Copper and zinc speciation in the solution of a soil-sludge mixture   总被引:2,自引:0,他引:2  
Only a small fraction of the transition metals content in sludge-amended soils is soluble, and yet this fraction is a major contributor to the mobility and bioavailability of the metals. The chemical species of zinc (Zn) and copper (Cu) in the soluble fractions of soil-sludge mixtures were characterized with respect to their charge, molecular weight, and stoichiometry using ion exchange resin and gel chromatography procedures. The change in the metals' species with time after sludge application was followed for 100 d. Copper in the water extracts of the sludge-sand mixtures was found almost exclusively in low molecular weight (below 1000 Da) complexes. Higher molecular weight (around 2500 Da) dissolved organic carbon (DOC) was present in the extracts as well, but this DOC fraction exhibited little complexation. Copper was present in the extracts mainly as negatively charged species throughout the incubation period, and zinc tended to form zwitter ions. As incubation progressed, the relative content of positively charged Zn in solution increased. Complexation capacity of DOC in sludge water extract, extrapolated to infinite dilution, was 8.75 mM Ca g(-1) DOC. When the complexation capacity of the extract is near saturation, a mean Cu-DOC complex can be defined. It consists of 1.9 Cu atoms attached to DOC species containing 5.6 C atoms. Thus, the organic Cu complexes consist primarily of about two Cu ions attached to DOC species containing only five or six C atoms. Amino acids and small peptides or polycarboxylic acids, such as citric acid, thus may be important complexing agents of the metal.  相似文献   

14.
Infrared microspectroscopy (IMS) is emerging as an important analytical tool for the structural analysis of biological tissue. This report describes the use of IMS coupled to a synchrotron source combined with principal components analysis (PCA) to monitor the fate and effect of dinitrotoluenes in the roots of maize and sunflower plants. Infrared imaging revealed that maize roots metabolized 2,4-dinitrotoluene (DNT) and 2,6-DNT. The DNTs and their derivative aromatic amines were predominantly associated with epidermis and xylem. Both isomers of DNT altered the structure and production of pectin and pectic polysaccharides in maize and sunflower plant roots. Infrared peaks diagnostic for aromatic amines were seen at the 5 mg L concentrations for both DNTs in maize and sunflower treated tissue. However, only infrared peaks for nitro groups, not aromatic amines, were present in the maize treated at 10 mg L For sunflower, the 10 mg L level was toxic and also produced very dark root systems making spectra difficult to obtain. Maize and sunflower seem unable to metabolize effectively at concentrations higher than about 5 mg L DNT in hydroponic solution. Based on the results of this study, IMS combined with PCA can be an effective means of determining the fate and metabolism of organic contaminants in plant tissue when isotopically labeled compounds are not available.  相似文献   

15.
This study was performed to investigate mercury (Hg) tolerance, accumulation, and translocation within the genus Salix for the potential use of this plant to remediate Hg-contaminated sites. Six clones of willow (Salix spp.) were tested on tolerance to Hg by treating plants grown in solution culture with 0 to 15 microM HgCl(2). Results showed that willow had a large variation in its sensitivity to Hg. However, the accumulation and translocation of Hg to shoots was similar in the eight tested willow clones as shown by cold vapor atomic absorption spectrometry analysis when plants were treated with 0.5 microM HgCl(2) in a nutrient solution. The majority of total Hg accumulated was localized to the roots, whereas only 0.45 to 0.62% of the total Hg accumulated via roots was translocated to the shoots. Thus, the root system is the main tissue of willow that accumulates Hg and the majority of the Hg in the root system (80%) was bound in the cell wall.  相似文献   

16.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   

17.
This 5-yr study compared, via an upstream-downstream experimental design, nutrient and microbial water quality of an intermittent stream running through a small pasture (~2.5 animals ha) where cattle are restricted from the riparian zone (restricted cattle access [RCA]) and where cattle have unrestricted access to the stream (unrestricted cattle access [URCA]). Fencing in the RCA excluded pasturing cattle to within ~3 to 5 m of the stream. Approximately 88% (26/32) of all comparisons of mean contaminant load reduction for lower, higher, and all stream flow conditions during the 5-yr study indicated net contaminant load reductions in the RCA; for the URCA, this percentage was 38% (12/32). For all flow conditions, mean percent load reductions in the RCA for nutrients and bacteria plus F-coliphage were 24 and 23%, respectively. These respective percentages for the URCA were -9 and -57% (positive values are reductions; negative values are increases). However, potentially as a result of protected wildlife habitat in the RCA, the mean percent load reduction for for "all flow" was -321% for the RCA and 60% for the URCA; for , these respective percentages were -209% (RCA) and 73% (URCA). For "all flow" situations, mean load reductions for the RCA were significantly greater ( < 0.1) than those from the URCA for NH-N, dissolved reactive phosphorus (DRP), total coliform, , and . For "high flow" situations, mean load reductions were significantly greater for the RCA for DRP, total coliform, and . For "low flow" conditions, significantly greater mean load reductions were in favor of the RCA for DRP, total P, total coliforms, fecal coliforms, , and . In no case were mean pollutant loads in the URCA significantly higher than RCA pollutant loads. Restricting pasturing livestock to within 3 to 5 m of intermittent streams can improve water quality; however, water quality impairment can occur if livestock have unrestricted access to a stream.  相似文献   

18.
Intensive manure application is an important source of diffuse phosphorus (P) pollution. Phosphorus availability from animal manure is influenced by its chemical speciation. The major objective of this study was to investigate the P speciation in raw and anaerobically digested dairy manure with an emphasis on the calcium (Ca) and magnesium (Mg) phosphate phases. Influent and effluent from an on-farm digester in Wisconsin were sampled and sieved, and the 25 to 53 microm size fraction was dried for X-ray powder diffraction (XRD) and P K-edge X-ray absorption near edge structure (XANES) analyses. Struvite (MgNH4PO4.6H2O) was identified in both the raw (influent) and anaerobically digested (effluent) manure using XRD. Qualitative analysis of P K-edge XANES spectra indicated that the Ca orthophosphate phases, except dicalcium phosphate anhydrous (DCPA) or monetite (CaHPO4), were not abundant in dairy manure. Linear combination fitting (LCF) of the P standard compounds showed that 57.0 and 43.0% of P was associated with DCPA and struvite, respectively, in the raw manure. In the anaerobically digested sample, 78.2% of P was present as struvite and 21.8% of P was associated with hydroxylapatite (HAp). The P speciation shifted toward Mg orthophosphates and least soluble Ca orthophosphates following anaerobic digestion. Similarity between the aqueous orthophosphate (aq-PO4), newberyite (MgHPO4.3H2O), and struvite spectra can cause inaccurate P speciation determination when dairy manure is analyzed solely using P K-edge XANES spectroscopy; however, XANES can be used in conjunction with XRD to quantify the distribution of inorganic P species in animal manure.  相似文献   

19.
Phytoremediation depends on the ability of plants to tolerate and assimilate contaminants. This research characterized the interaction between several ornamental plant species and the fungicidal active ingredient, metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)alanine methyl ester]. Species evaluated included sweetflag (Acorus gramineus Sol. ex Aiton), canna (Canna hybrida L. 'Yellow King Humbert'), parrotfeather [Myriophyllum aquaticum (Vell.) Verdc.], and pickerelweed (Pontederia cordata L.). Metalaxyl tolerance levels for each species were determined by exposing plants for 7 d to solutions containing 0, 5, 10, 25, 50, 75, or 100 mg metalaxyl L-1 aqueous nutrient media. Response endpoints included fresh mass production after 7 d exposure and 7 d post-exposure and quantum efficiency using dark-adapted (Fv/Fm) and light-adapted (fluorescence yields) plants. Metalaxyl uptake and distribution within the plant was determined by growing plants in aqueous nutrient media containing 1.18 x 10(6) Bq L-1 [14C]metalaxyl (0.909 mg L-1) for 1, 3, 5, or 7 d. Plant tissues were combusted and analyzed by liquid scintillation counting. Metalaxyl had no effects on the endpoints measured, except for fresh mass production of sweetflag at the 75 and 100 mg L-1 treatment levels. However, leaf necrosis was apparent in most species after 5 d exposure to concentrations greater than 25 mg L-1. Metalaxyl removal from the spiked nutrient media ranged from 15 to 60% during the 7-d exposure period. The majority of metalaxyl removed from the solution was detected within individual plants. In nearly all cases, activity from the radiolabeled pesticide accumulated in the leaves. Uptake of metalaxyl was correlated with water uptake throughout the 7 d. These results suggest that all species examined may be good candidates for incorporation into a phytoremediation scheme for metalaxyl.  相似文献   

20.
We studied the long-term in situ accumulation of Cu, Cr, Ni, and Zn in the soil profile of a large-scale effluent recharge basin after 24 yr of operation in a wastewater reclamation plant using the Soil Aquifer System approach in the Coastal Plain of Israel. The objective was to quantify metals accumulation in the basin's soil profile, clarify retention mechanisms, and calculate material balances and metal removal efficiency as the metal loads increase. Effluent recharge led to measurable accumulation, relative to the pristine soil, of Ni and Zn in the 0- to 4-m soil profile, with concentration increases of 0.3 to 1.3 mg kg(-1) and 2.9 to 6.4 mg kg(-1), respectively. Copper accumulated only in the 0- to 1-m top soil layer, with concentration increase of 0.28 to 0.76 mg kg(-1). Chromium concentration increased by 3.1 to 7.3 mg kg(-1) in the 0- to 1-m horizon and 0.9 to 2.3 mg kg(-1) at deeper horizons. Sequential selective extraction showed Cu tended to be preferentially retained by Fe oxides and organic matter (OM), Cr by OM, Ni by OM, and carbonate and Zn by carbonate. The average total retained amounts of Cu, Cr, Ni, and Zn were 0.7 +/- 1.0, 13.6 +/- 4.8, 4.3 +/- 3.6, and 28.7 +/- 5.4 g per a representative unit soil slab (1 m(2) x 4 m) of the basin, respectively. This amounts to 3.6 +/- 4.9%, 79.5 +/- 28.0%, 8.0 +/- 6.9%, and 9.3 +/- 1.8% of the Cu, Cr, Ni, and Zn loads, respectively, applied during 24 yr of effluent recharge (total of approximately 1880 m effluent load). The low long-term overall removal efficiency of the metals from the recharged effluent in the top horizon may be due to the metals' low concentrations in the recharged effluent and the low adsorption affinity and retention capacity of the sandy soil toward them. This leads to attainment of a quasi-equilibrium and a steady state in element distribution between the recharged effluent solution and the soil after few years of recharge and relatively small cumulative effluent loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号