首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A well-drained soil in N-fertilized dairy pasture was amended with particulate organic carbon (POC), either sawdust or coarse woody mulch, and sampled every 4 wk for a year to test the hypothesis that the addition of POC would increase denitrification activity by increasing the number of microsites where denitrification occurred. Overall mean denitrifying enzyme activity (DEA), on a gravimetric basis, was 100% greater for the woody mulch treatment and 50% greater for the sawdust treatment compared with controls, indicating the denitrifying potential of the soil was enhanced. Despite differences in DEA, no difference in denitrification rate, as measured by the acetylene block technique, was detected among treatments, with an average annual N loss of ~22 kg N ha yr Soil water content overall was driving denitrification in this well-drained soil as regression of the natural log of volumetric soil water content (VWC) against denitrification rate was highly significant ( = 0.74, < 0.001). Addition of the amendments, however, had significant effects on the availability of both C and N. An additional 20 to 40 kg N ha was stored in POC-amended treatments as a result of increases in the microbial biomass. Basal respiration, as a measure of available C, was 400% greater than controls in the sawdust treatment and 250% greater than controls in the mulch. Net N mineralization, however, was significantly lower in the sawdust treatment, resulting in significantly lower nitrate N levels than in the control. We attribute the lack of measured response in denitrification rate to the high temporal variability in denitrification and suggest that diffusion of nitrate may ultimately have limited denitrification in the amended treatments. Our data indicate that manipulation of denitrification by addition of POC may be possible, particularly when nitrate levels are high, but quantifying differences in the rate of denitrification is difficult because of the temporal nature of the process (particularly the complex interaction of N availability and soil water content).  相似文献   

2.
A significant improvement in river water quality cannot be expected unless nonpoint-source contaminants are treated in addition to the further treatment of point-source contaminants. If river water is sprayed over a floodplain, the consequent water filtration through the sediment profile can simultaneously remove organic matter and nitrogen in the water through aerobic and denitrifying reactions. This hypothesis was tested using lysimeters constructed from polyvinyl chloride (PVC) pipe (150 cm long, 15 cm in diameter) packed with loamy sand floodplain sediment. Water was applied to the top of the lysimeters at three different flow rates (48, 54, and 68 mm d(-1)). Concentrations of NO3 and dissolved oxygen (DO), chemical oxygen demand (COD), and redox potential (Eh) in the water were measured as functions of depth after the system reached steady states for both water flow and reactions. At the rate of 68.0 mm d(-1), a reducing condition for denitrification developed below the 5-cm depth due to the depletion of O2 by organic matter degradation in the surface oxidizing layer; Eh and DO were below 205 mV and 0.4 mg L(-1), respectively. At a depth of 70 cm, COD and NO3-N concentration decreased to 5.2 and 3.8 mg L(-1) from the respective influent concentrations of 17.1 and 6.2 mg L(-1). Most biodegradable organic matter was removed during flow and further removal of NO3 was limited by the lack of an electron donor (i.e., organic matter). These results indicate that the floodplain filtration technique has great promise for treatment of contaminated river water.  相似文献   

3.
Experiments to document the long-term effects of clipping management on N requirements, soil organic carbon (SOC), and soil organic nitrogen (SON) are difficult and costly and therefore few. The CENTURY ecosystem model offers an opportunity to study long-term effects of turfgrass clipping management on biomass production, N requirements, SOC and SON, and N leaching through computer simulation. In this study, the model was verified by comparing CENTURY-predicted Kentucky bluegrass (Poa pratensis L.) clipping yields with field-measured clipping yields. Long-term simulations were run for Kentucky bluegrass grown under home lawn conditions on a clay loam soil in Colorado. The model predicted that compared with clipping-removed management, returning clippings for 10 to 50 yr would increase soil C sequestration by 11 to 25% and nitrogen sequestration by 12 to 28% under a high (150 kg N ha(-1) yr(-1) nitrogen (N) fertilization regime, and increase soil carbon sequestration by 11 to 59% and N sequestration by 14 to 78% under a low (75 kg N ha(-1) yr(-1)) N fertilization regime. The CENTURY model was further used as a management supporting system to generate optimal N fertilization rates as a function of turfgrass age. Returning grass clippings to the turf-soil ecosystem can reduce N requirements by 25% from 1 to 10 yr after turf establishment, by 33% 11 to 25 yr after establishment, by 50% 25 to 50 yr after establishment, and by 60% thereafter. The CENTURY model shows potential for use as a decision-supporting tool for maintaining turf quality and minimizing negative environmental impacts.  相似文献   

4.
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.  相似文献   

5.
Soil particle size and land management practices are known to have considerable influence on carbon (C) storage in soils, but such information is lacking for silvopastoral systems in Spain. This study quantified the amounts of soil C stored at various depths to 100 cm under silvopastoral plots of radiata pine ( D. Don) and birch ( Roth) in comparison to treeless pasture in Galicia, Spain. Soils were fractionated into three size classes (<53, 53-250, and 250-2000 μm), and C stored in them and in the whole (nonfractionated) soil was determined. Overall, the C stock to 1 m ranged from 80.9 to 176.9 Mg ha in these soils. Up to 1 m depth, 78.82% of C was found in the 0- to 25-cm soil depth, with 12.9, 4.92, and 3.36% in the 25- to 50-, 50- to 75-, and 75- to 100-cm depths, respectively. Soils under birch at 0 to 25 cm stored more C in the 250- to 2000-μm size class as compared with those under radiata pine; at that depth, pasture had more C than pine silvopasture in the smaller soil fractions (<53 and 53-250 μm). In the 75- to 100-cm depth, there was significantly more storage of C in the 250- to 2000-μm fraction in both silvopastures as compared with the pasture. The higher storage of soil C in larger fraction size in lower soil depths of silvopasture suggests that planting of trees into traditional agricultural landscapes will promote longer-term storage of C in the soil.  相似文献   

6.
Some soils develop severe and persistent water repellency following contamination with crude oil. This study was conducted to characterize and compare the spatial distribution of soil water repellency and residual oil contamination at 12 such sites. The molarity of ethanol droplet (MED) test was used to assess soil water repellency and the content of dichloromethane-extractable organics (DEO) was used to quantify residual oil in soil. We found a relatively strong positive correlation between MED and DEO in soil (r2 = 0.74). Both variables tended to decrease abruptly with depth at 11 of the 12 study sites. Dichloromethane-extractable organics similarly decreased with depth in control adjacent soil (MED = 0 M), but from an average concentration one to two orders of magnitude lower than in water-repellent soil. Using data from corresponding control adjacent and water-repellent soils, we determined that approximately 29 and 10% of measured total organic carbon in water-repellent A- and B-horizon soil, respectively, consists of dichloromethane-insoluble organic carbon of petroleum origin. We propose that this fraction contains most of the causative agents of soil water repellency at the studied sites.  相似文献   

7.
Since 1994, water-quality constituents have been measured monthly in three adjacent Coastal Plain watersheds in southwestern Georgia. During 1994, rainfall was 650 mm above annual average and the highest flows on record were observed. From November 1998 through November 2000, 19 months had below average rainfall. Lowest flows on record were observed during the summer of 2000. The watersheds are human-dominated with row-crop agriculture and managed forestlands being the major land uses. However, one watershed (Chickasawhatchee Creek) had 10 to 13% less agriculture and greater wetland area, especially along the stream. Suspended particles, dissolved organic carbon, NH4-N, and soluble reactive phosphorus concentrations were greater during wet and flood periods compared with dry and drought periods for each stream. Regional hydrologic conditions had little effect on NO3-N or dissolved inorganic carbon. Chickasawhatchee Creek had significantly lower suspended sediment and NO3-N concentrations and greater organic and inorganic carbon concentrations, reflecting greater wetland area and stronger connection to a regional aquifer system. Even though substantial human land use occurred within all watersheds, water quality was generally good and can be attributed to low stream drainage density and relatively intact floodplain forests. Low drainage density minimizes surface run-off into streams. Floodplain forests reduce nonpoint-source pollutants through biological and physical absorption. In addition to preserving water quality, floodplain forests provide important ecological functions through the export of nutrients and organic carbon to streams. Extreme low flows may be disruptive to aquatic life due to both the lack of water and to the scarcity of biologically important materials originating from floodplain forests.  相似文献   

8.
Seven mixtures from four organic residues—an aerobic sewage sludge, a city refuse, a peat residue, and a grape debris—were composted, and the changes undergone by their different carbon fractions during their composting and maturation were studied. In most cases a decrease in carbon fractions during the composting and maturation processes was observed. The extractable carbon, however, increased during maturation. Organic matter mineralization was greater in the composts with city refuse than in those with sewage sludge. The samples with peat residue showed the lowest decreases in carbon fractions. During maturation, an increase of humiclike fraction was observed, which was reflected by a decrease in the soluble carbon-precipitated carbon ratio at pH 2. Water-soluble carbon was the carbon fraction most easily degradable by microorganisms, and its amount correlated significantly with composting time in all the samples.  相似文献   

9.
Carbon sequestration in soils might mitigate the increase of carbon dioxide (CO2) in the atmosphere. Two contrasting subtropical perennial forage species, bahiagrass (BG; Paspalum notatum Flügge; C4), and rhizoma perennial peanut (PP; Arachis glabrata Benth.; C3 legume), were grown at Gainesville, Florida, in field soil plots in four temperature zones of four temperature-gradient greenhouses, two each at CO2 concentrations of 360 and 700 micromol mol(-1). The site had been cultivated with annual crops for more than 20 yr. Herbage was harvested three to four times each year. Soil samples from the top 20 cm were collected in February 1995, before plant establishment, and in December 2000 at the end of the project. Overall mean soil organic carbon (SOC) gains across 6 yr were 1.396 and 0.746 g kg(-1) in BG and PP, respectively, indicating that BG plots accumulated more SOC than PP. Mean SOC gains in BG plots at 700 and 360 micromol mol(-1) CO2 were 1.450 and 1.343 g kg(-1), respectively (not statistically different). Mean SOC gains in PP plots at 700 and 360 micromol mol(-1) CO2 were 0.949 and 0.544 g kg(-1), respectively, an increase caused by elevated CO2. Relative SON accumulations were similar to SOC increases. Overall mean annual SOC accumulation, pooled for forages and CO2 treatments, was 540 kg ha(-1) yr(-1). Eliminating elevated CO2 effects, overall mean SOC accumulation was 475 kg ha(-1) yr(-1). Conversion from cropland to forages was a greater factor in SOC accumulation than the CO2 fertilization effect.  相似文献   

10.
Dissolved organic carbon (DOC) export from soils can play a significant role in soil C cycling and in nutrient and pollutant transport. However, information about DOC losses from agricultural soils as influenced by management practices is scarce. We compared the effects of mineral fertilizer (MF) and liquid hog manure (LHM) applications on the concentration and molecular size of DOC released in runoff and tile-drain water under corn (Zea mays L.) and forage cropping systems. Runoff and tile-drain water samples were collected during a 2-mo period (October to December 1998) and DOC concentration was measured. Characterization of DOC was performed by tangential ultrafiltration with nominal cut-offs at 3 and 100 kDa. Mean concentration of DOC in runoff water (12.7 mg DOC L(-1)) was higher than in tile-drain water (6.5 mg DOC L(-1)). Incorporation of corn residues increased the DOC concentration by 6- to 17-fold in surface runoff, but this effect was short-lived. In runoff water, the relative size of the DOC molecules increased when corn residues and LHM were applied probably due to partial microbial breakdown of these organic materials and to a faster decomposition or preferential adsorption of the small molecules. The DOC concentration in tile-drain water was slightly higher under forage (7.5 mg DOC L(-1)) than under corn (5.4 mg DOC L(-1)) even though the application rates of LHM were higher in corn plots. We suggest that preferential flow facilitated the migration of DOC to tile drains in forage plots. In conclusion, incorporation of corn residues and LHM increased the concentration of DOC and the relative size of the molecules in surface runoff water, whereas DOC in tile-drain water was mostly influenced by the cropping system with relatively more DOC and larger molecules under forage than corn.  相似文献   

11.
New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g., with sewage sludge) and agroforestry could be used to reduce nutrient leaching. We assessed the efficiency of establishing trees and pasture species in environmentally sensitive, irrigated Mediterranean grassland soils in controlling nitrate leaching. Four vegetation systems-bare soil, pasture species, cherry trees [ (L.) L.], and pasture-tree mixed plantings-and five fertilization treatments-control, two doses of mineral fertilizer, and two doses of organic fertilizer (sewage sludge)-were tested in a greenhouse experiment over 2 yr. In the experiment, the wet and warm climate characteristics of Mediterranean irrigated croplands and the plant-to-plant and soil-to-plant interactions that occur in open-field agroforestry plantations were simulated. Following a factorial design with six replicates, 120 pots (30-cm radius and 120 cm deep) were filled with a sandy, alluvial soil common in the cultivated fluvial plains of the region. The greatest pasture production and tree growth were obtained with sewage sludge application. Both pasture production and tree growth decreased significantly in the pasture-tree mixed planting. Nitrate leaching was negligible in this latter treatment, except under the highest dose of sewage sludge application. The rapid mineralization of sludge suggested that this organic fertilizer should be used very cautiously in warm, irrigated Mediterranean soils. Mixed planting of pasture species and trees, such as , could be a useful tool for mitigating nitrate leaching from irrigated Mediterranean pastures on sandy soils.  相似文献   

12.
The capacity of riparian soils to remove nitrate (NO3) from ground water is well established, but the effects of ground water NO3(-)-enrichment on C dynamics are not well studied. We incubated horizontal cores of aquifer material extracted from beneath moderately well-drained (MWD) and poorly drained (PD) soils in a riparian forest in Rhode Island, USA for 132 d, and dosed (flow rate, 170 mL d(-1); dissolved O2, 2 in PD and 5 mg L(-1) in MWD cores) with ground water amended with either Br-, Br(-)+ NO3- (10 mg N L(-1)), or Br(-) + NO3(-) + DOC (20 mg C L(-1)). The DOC was extracted from forest floor material and added during the first 56 d of the experiment. Addition of NO3- had limited effect on CO2 production while DOC amendment had a significant effect in the PD but not in the MWD mesocosms. Total CO2 production (mg CO2-C kg(-1) soil) was 6.3, 7.0, and 10.1 in the PD and 3.6, 4.0, and 4.5 in the MWD cores amended with Br-, Br(-) + NO3-, and Br(-) + NO3(-) + DOC, respectively. Carbon balance (C(bal) = DOC(in) - (DOC(out) + CO2-C) showed a net C retention of 8.0 mg C kg(-1) soil in the DOC-amended MWD cores (equivalent to 50% of the DOC added), and a net C loss of 8.3 mg C kg(-1) soil in similarly treated PD cores. The lack of C retention in the PD cores was ascribed to reductive dissolution of minerals implicated in DOC sorption. These findings underscore that there is marked variation in C dynamics in riparian aquifers that has the potential to influence the fate of NO3- and DOC in the landscape.  相似文献   

13.
Excessive N and water use in agriculture causes environmental degradation and can potentially jeopardize the sustainability of the system. A field study was conducted from 2000 to 2002 to study the effects of four N treatments (0, 100, 200, and 300 kg N ha(-1) per crop) on a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system under 70 +/- 15% field capacity in the North China Plain (NCP). The root zone water quality model (RZWQM), with the crop estimation through resource and environment synthesis (CERES) plant growth modules incorporated, was evaluated for its simulation of crop production, soil water, and N leaching in the double cropping system. Soil water content, biomass, and grain yield were better simulated with normalized root mean square errors (NRMSE, RMSE divided by mean observed value) from 0.11 to 0.15 than soil NO(3)-N and plant N uptake that had NRMSE from 0.19 to 0.43 across these treatments. The long-term simulation with historical weather data showed that, at 200 kg N ha(-1) per crop application rate, auto-irrigation triggered at 50% of the field capacity and recharged to 60% field capacity in the 0- to 50-cm soil profile were adequate for obtaining acceptable yield levels in this intensified double cropping system. Results also showed potential savings of more than 30% of the current N application rates per crop from 300 to 200 kg N ha(-1), which could reduce about 60% of the N leaching without compromising crop yields.  相似文献   

14.
Deposition of sea salts is commonly elevated along the coast relative to inland areas, yet little is known about the effects on terrestrial ecosystem biogeochemistry. We examined the influence of NaCl concentrations on N, C, and P leaching from a coastal Oregon forest Andisol in two laboratory studies: a rapid batch extraction (approximately 1 d) and a month-long incubation using microlysimeters. In the rapid extractions, salt additions immediately mobilized significant amounts of ammonium and phosphate but not nitrate. In the month-long incubations, salt additions at concentrations in the range of coastal precipitation increased nitrate leaching from the microcosms by nearly 50% and reduced the mobility of dissolved organic carbon. Our findings suggest that coupled abiotic-biotic effects increase nitrate mobility in these soils: exchange of sodium for ammonium, then net nitrification. Changes in sea salt deposition to land and the interactions with coastal soils could alter the delivery of N and C to sensitive coastal waters.  相似文献   

15.
Vegetation fires may alter the quantity and quality of organic matter inputs to soil, rates of organic matter decay, and environmental factors that influence those processes. However, few studies have evaluated the impacts of this land management technique on soil organic carbon (SOC) and total N in grasslands and savannas. We evaluated the impact of repeated fires and their season of occurrence on SOC and total N storage in a temperate mixed-grass-mesquite savanna where fire is used to control woody plant encroachment. Four fire treatments varying in season of occurrence were examined: summer only (SF), winter only (WF), alternate summer and winter fires (SWF), and unburned controls. In each treatment, soils were sampled to 1 m under three vegetation types: C3 grasses, C4 grasses, and mesquite trees. The SOC storage at 0 to 20 cm was significantly greater in SF (2693 g C m(-2)) and SWF (2708 g C m(-2)) compared to WF (2446 g C m(-2)) and controls (2445 g C m(-2)). The SWF treatment also increased soil total N (271 g N m(-2)) relative to all other treatments (228-244 g N m(-2)) at 0 to 20 cm. Fire had no effect on SOC or total N at depths of > 20 cm. Vegetation type had no significant influence on SOC or total N stocks. The delta13C value of SOC was not affected by fire, but increased from -21 per thousand at 0 to 10 cm to -15 per thousand at depths of > 20 cm indicating that all treatments were once dominated by C4 grasses before woody plant encroachment during the past century. These results have implications for scientists, land managers, and policymakers who are now evaluating the potential for land uses to alter ecosystem C storage and influence atmospheric CO2 concentrations and global climate.  相似文献   

16.
We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments.  相似文献   

17.
Accurate detection and identification of natural or intentional contamination events in a drinking water pipe is critical to drinking water supply security and health risk management. To use conventional water quality sensors for the purpose, we have explored a real-time event adaptive detection, identification and warning (READiw) methodology and examined it using pilot-scale pipe flow experiments of 11 chemical and biological contaminants each at three concentration levels. The tested contaminants include pesticide and herbicides (aldicarb, glyphosate and dicamba), alkaloids (nicotine and colchicine), E. coli in terrific broth, biological growth media (nutrient broth, terrific broth, tryptic soy broth), and inorganic chemical compounds (mercuric chloride and potassium ferricyanide). First, through adaptive transformation of the sensor outputs, contaminant signals were enhanced and background noise was reduced in time-series plots leading to detection and identification of all simulated contamination events. The improved sensor detection threshold was 0.1% of the background for pH and oxidation–reduction potential (ORP), 0.9% for free chlorine, 1.6% for total chlorine, and 0.9% for chloride. Second, the relative changes calculated from adaptively transformed residual chlorine measurements were quantitatively related to contaminant-chlorine reactivity in drinking water. We have shown that based on these kinetic and chemical differences, the tested contaminants were distinguishable in forensic discrimination diagrams made of adaptively transformed sensor measurements.  相似文献   

18.
Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated.  相似文献   

19.
Biosolids deep-row incorporation (DRI) provides high levels of nutrients to the reclamation sites; however, additions of N in excess of the vegetation requirements can potentially impair water quality. The effects of anaerobically digested (AD) and lime stabilized (LS) DRI biosolids and inorganic N fertilizer were compared on C and N transformations and transport at a reclaimed mineral sands mining site. Biosolids were applied at 213 and 426 Mg AD biosolids ha(-1) and 328 and 656 Mg LS biosolids ha)(-1) (dry mass), and inorganic N fertilizer was applied at 0 (control) and 504 kg N ha-(-1) yr(-1). Zero tension lysimeters were installed to collect leachate for determination of vertical N transport, and the biosolids seams were analyzed for N and C transformations after 28 mo aging. The leachijng masses from the DRI biosolids treatments were 139 to 291 kg ha(-1) NO3-N, 61 to 243 kg ha(-1) NH4-N, and 61 to 269 kg ha(-1) organic N, while the fertilizer treatment did not differ from the control. Aged biosolids analysis showed that total N lost over the course of 2 yr was 15.2 Mg ha(-1) and 10.9 Mg ha(-1) for LS and AD biosolids, respectively, which was roughly 50% of the N applied. Organic C losses were 81 Mg ha(-1) and 33 Mg ha(-1) for LS and AD biosolids, respectively. Our results indicated that entrenchment of biosolids in coarse-textured media should not be used as a mined land reclamation technique because the anaerobic conditions required to limit mineralization and nitrification cannot be maintained in such permeable soils.  相似文献   

20.
Summary A comparison is made of major issues relating to drinking water and river water quality in the UK and the CIS (USSR). Historical and legislative aspects are briefly reviewed. In both countries there is an imbalance between the location of fresh water sources and the distribution of the population. In each country standards are used to define water quality. These standards tend to be more exacting in the CIS. In the UK derogations are used to produce a more relaxed standard. Failure to comply with drinking water standards is common in the CIS (on average 20 percent of samples). In the UK, data are recorded on a different basis, but it appears that deviations from nitrate and pesticide standards are common. In both countries' water supplies, pollution appears to be extensive with few overall signs of significant improvement. This is attributable partly to lack of effective enforcement and weak penalties for transgressors. There is a high level of public concern regarding water quality and health in both the CIS and the UK. As a consequence there are increasing signs in each country of a national determination to implement the legislation more effectively. Needs for further actions are identified.Dr Olga Bridges was born and educated in Russia. Since coming to the UK she has held posts on Soviet Studies in various universities. Dr Bridges' early research was in attitudes to languages and nationality, but more recently it has centred on attitudes to environmental issues. To further her knowledge of scientific aspects of environmental problems, Dr Bridges is currently taking the Advanced Diploma in Environmental Practice at Farnborough College of Technology, UK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号