首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naturally occurring dissolved organic matter (DOM) and biosolids-derived DOM have been implicated in the mobility of metals in soils and aquifer materials. To investigate the effect of DOM on copper mobility in aquifer material, DOM derived from sewage biosolids was separated into two apparent molecular-weight (MW) fractions, 500 to 3500 Da (LMW) and > 14 000 Da (HMW). In each MW fraction, the DOM was further fractionated into hydrophilic, hydrophobic acid, and hydrophobic neutral compounds by an XAD-8 chromatography technique. The mobility of these DOM components and their influences on copper transport in a sesquioxide-coated, sandy aquifer material were examined with column transport experiments. The LMW DOM was found to be highly mobile, whereas the HMW DOM had a greater tendency to be retained by the aquifer material. Within the same MW fraction, the mobility of DOM followed the order of hydrophilic DOM > hydrophobic acid DOM > hydrophobic neutral DOM. Copper breakthrough curves in the presence of various DOM components showed that, except for the HMW hydrophilic fraction, DOM components enhanced Cu transport through the aquifer columns at early stages of transport (the first 75 pore volumes). In the later stages, however, all the DOM components substantially inhibited Cu mobility. We hypothesize that several mechanisms could account for retardation of Cu movement in the presence of the DOM fractions, including the formation of ternary complexes between the aquifer material, Cu, and DOM; changes in the electrostatic potential at the solid-phase surface; and pH buffering by DOM.  相似文献   

2.
The role of structural fractions of dissolved organic matter (DOM) from wastewater in the sorption process of hydrophobic organic compounds is still not clear. In this study, DOM from two wastewater treatment plants (Lachish and Netanya, Israel) was fractionated to hydrophobic acid (HoA) and hydrophobic neutral (HoN) fractions. The fractions were characterized and their sorptive capabilities for s-triazine herbicides and polycyclic aromatic hydrocarbons (PAHs) were studied. For all sorbates, the binding to the HoN fractions was much higher than to HoA fractions. The HoA fractions were more polar than the HoN fractions, containing a higher level of carboxylic functionalities. However the higher binding coefficients of atrazine (2-chloro-4-ethylamine-6-isopropylamino-s-triazine) and ametryn [2-(ethylamino)-4-isopropylamino-6-methyl-thio-s-triazine] obtained for the HoN fractions suggest that their sorption is governed by hydrophobic-like interactions rather than H bonding. The values of binding coefficients of PAHs measured for the HoN fractions were within the range reported for humic acids and much higher than other fractions, suggesting that this fraction plays an important role in the overall sorption of these compounds by DOM. Higher sorption coefficients were measured for the Netanya DOM sample containing higher level of hydrophobic fractions (HoA + HoN) than the Lachish DOM, suggesting that the sorption of hydrophobic organic compounds by DOM is governed by the level of these structural substances. The evaluation of mobility of organic pollutants by wastewater irrigation requires not only assessment of the total carbon concentration but also, more importantly, the content of the hydrophobic fractions.  相似文献   

3.
A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.  相似文献   

4.
Prosulfuron [1-(4-methoxy-6-methyltriazin-2-yl)-3-[2-(3,3,3-trifluoropropyl) phenylsulfonyl]-urea), a relatively new sulfonylurea herbicide, is a weak acid (pK(a) 3.76), and therefore, will undergo pH-dependent speciation and sorption. Understanding prosulfuron sorption in soils is important for predicting its environmental fate. Soil and solution factors controlling sorption were investigated by measuring prosulfuron sorption on five model sorbents (amorphous silica, alpha-alumina, CaSWy1 montmorillonite, commercial humic acid, and anion exchange resin) and 10 variable-charge soils from CaCl(2) and Ca(H(2)PO(4))(2) solutions as a function of pH and ionic strength. Anion exchange of prosulfuron accounted for up to 82% of overall sorption in the pH range from 3 to 7. The relative importance of anion exchange to prosulfuron sorption was positively correlated to the ratio of anion and cation exchange capacities. Comparison between organic carbon (OC)-normalized sorption (K(oc)) versus pH for humic acid and variable-charge soils show similar trends with sorption decreasing with increasing pH. However, K(oc) values estimated from variable-charge soils in the lower pH range where anion exchange has the greatest contribution to sorption was almost one log unit greater than that estimated from humic acid clearly exemplifying the impact of anion exchange. Similarity in K(oc)-pH curves for humic acid and variable-charge soils may result from the fact that (i) cation exchange capacity increases with increasing OC content, thus effective anion exchange capacity is reduced; and (ii) the relative contribution of hydrophobic and hydrophilic sorption mechanisms was fairly constant. Given that both hydrophilic and hydrophobic sorption of prosulfuron decrease with increasing pH, addition of fertilizer and lime amendments may enhance the potential for off-site leaching of recently applied acidic pesticides.  相似文献   

5.
Sorption of a representative ionizable nitrogen heterocycle, quinoline (pKa = 4.92), was investigated to determine the relative contributions of the neutral and protonated species to the overall process. Batch sorption experiments were conducted on surfactant-modified clays that were synthesized from the exchange of hexadecyltrimethylammonium cations for resident sodium cations on a specimen smectite (Swy-2) at 0, 60, 80, and 100% of the clay's cation exchange capacity (CEC). Hexadecyltrimethylammonium exchange creates highly effective organic partitioning domains within the clay interlayers in proportion to their coverage on the exchange complex. The fractionally exchanged clays, therefore, provided discrete exchange and organic partitioning domains for the protonated and neutral species of quinoline. Data were described by a combined Langmuir-linear isotherm that permitted independent characterization of both sorption components. Results indicated that cationic sorption dominated but that the neutral species can contribute substantially given sufficient organic carbon content relative to the CEC and at pH above the pKa of quinoline. The data obtained in this study for quinoline demonstrated that the combined isotherm (including cation exchange and hydrophobic partitioning terms) describes sorption data and compares favorably with the purely empirical Freundlish isotherm.  相似文献   

6.
Enzymatic hydrolysis and mineralization of organic phosphorus (P) were determined in surface water samples collected from inflow and outflow of a submerged aquatic vegetation (SAV)-dominated treatment wetland of the Florida Everglades. Water samples were fractionated into three size fractions (> 0.4 micron, < 0.4 to > 0.05 micron, and < 0.05 micron) with a sequential flow filtration technique. The fractionated water samples were incubated to hydrolyze with alkaline phosphatase (APase) and phosphodiesterase (PDEase), and to mineralize at different redox and pH. Unlike APase, which hydrolyzed < or = 10% of organic P, PDEase hydrolyzed > or = 71% of organic P in unfiltered water from both inflow and outflow waters, suggesting the domination of bioavailable diester P in the water. Phosphodiesterase completely hydrolyzed organic P in the < 0.4- to > 0.05-micron and < 0.05-micron fractions, as compared with < or = 35% in the > 0.4-micron fraction. However, the P mineralization in inflow and outflow waters at different redox and pH showed that P associated with particulate > 0.4 micron had been mineralized the most. Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy showed that surficial sediments from the inflow region contained a high proportion of polynucleotides, nucleoside monophosphates, and previously unreported glycerophosphoethanolamine and phosphoenolpyruvates. However, at the outflow, the relative proportion of polynucleotides and nucleoside monophosphates was reduced substantially. This suggests that the SAV wetland may sequester P via accretion of organic matter.  相似文献   

7.
Sorption of dissolved organic matter (DOM) plays an important role in maintaining the fertility and quality of soils in agricultural ecosystems. Few studies have examined the effects of decomposition on DOM sorption and chemical characteristics. This study investigated the sorption to goethite (alpha-FeOOH) of fresh and decomposed hydrophilic (HPL) and hydrophobic (HPB) DOM fractions extracted from the shoots and roots of crimson clover (Trifolium incarnatum L.), corn (Zea mays L.), soybean [Glycine max (L.) Merr.], hairy vetch (Vicia villosa L.), and dairy and poultry manures. Sorption was positively related to apparent molecular weight (MWAP), aromaticity as measured by absorptivity at 280 nm, and phenolic acid content. A 10-d laboratory microbial decomposition of the source organic matter generally increased the sorption of the extracted DOM onto goethite. The decomposition effect on sorption was greater for the HPL fractions than for the HPB fractions. There was a decrease in the MWAP values of the DOM samples following sorption to goethite. In many cases the reduction in MWAP was large, indicating a strong preference by goethite for the higher MWAP DOM fractions. The results of this laboratory-based research demonstrate that microbial processes affect the chemical characteristics of DOM which may affect the distribution of soil organic C pools.  相似文献   

8.
We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH <6.0), Zn was mainly found in the mobile fraction (F1) and the last two fractions (F6 and F7). In neutral soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.  相似文献   

9.
Oxytetracycline sorption to organic matter by metal-bridging   总被引:11,自引:0,他引:11  
The sorption of oxytetracycline to metal-loaded ion exchange resin and to natural organic matter by the formation of ternary complexes between polyvalent metal cations and sorbent- and sorbate ligand groups was investigated. Oxytetracycline (OTC) sorption to Ca- and Cu-loaded Chelex-100 resin increased with increasing metal/sorbate ratio at pH 7.6 (OTC speciation: 55% zwitterion, 45% anion). Greater sorption to Cu- than Ca-loaded resin was observed, consistent with the greater stability constants of Cu with both the resin sites and with OTC. Oxytetracycline sorption to organic matter was measured at pH 5.5 (OTC speciation: 1% cation, 98% zwitterion, 1% anion). No detectable sorption was measured for cellulose or lignin sorbents that contain few metal-complexing ligand groups. Sorption to Aldrich humic acid increased from "clean" < "dirty" (no cation exchange pretreatment) < Al-amended < Fe(III)-amended clean humic acid with K(d) values of 5500, 32000, 48000, and 250000 L kg(-1) C, respectively. Calcium amendments of clean humic acid suggested that a portion of the sorbed OTC was interacting by cation exchange. Oxytetracycline sorption coefficients for all humic acid sorbents were well-correlated with the total sorbed Al-plus-Fe(III) concentrations (r(2) = 0.87, log-log plot), suggesting that sorption by ternary complex formation with humic acid is important. Results of this research indicate that organic matter may be an important sorbent phase in soils and sediments for pharmaceutical compounds that can complex metals by the formation of ternary complexes between organic matter ligand groups and pharmaceutical ligand groups.  相似文献   

10.
Mineral surfaces can alter the ability of humic substances (HS) to bind hydrophobic organic contaminants. In this study, complete adsorption (i.e., to avoid HS adsorptive fractionation effects) of a small subset of well-characterized terrestrial and aquatic HS on kaolinite and hematite significantly changed their subsequent organic carbon-normalized partition coefficients K(ads)(oc) for pyrene relative to their original respective dissolved organic carbon-normalized partition coefficients K(dis)(oc). Parallel experiments with ultrafiltration (UF) fractions obtained from purified Aldrich humic acid (PAHA) (Aldrich Chemical, Milwaukee, WI) gave similar results. The heterogeneity among the PAHA UF fractions was examined via their mineral surface adsorption characteristics and their subsequent ability to bind pyrene. As expected, variations in maximum adsorption densities (q(max)), Langmuir adsorption constants (K(q)), and pyrene K(ads)(oc) values were observed among the PAHA UF fractions. However, general trends of q(max), K(q), and pyrene log K(ads)(oc) values for the PAHA UF fractions versus the logarithm of their weight-average molecular weights (MW(w)) did not typically match the corresponding trends obtained with the four aquatic and terrestrial HS. In general, an ideal mixture competitive adsorption model gave reasonable predictions for PAHA sorption to kaolinite and hematite based on their corresponding UF isotherm parameters. Ideal mixture predictions of pyrene partitioning to adsorbed PAHA from the corresponding UF fraction results were better for kaolinite versus hematite, indicating that the underlying mineral surface can alter the effects of HS heterogeneity on hydrophobic organic contaminant sorption.  相似文献   

11.
The use of mining substrates for recultivation purposes is limited due to their low organic matter (OM) contents. In a 1-yr laboratory experiment we evaluated the stabilization of biowaste compost added to a humus-free sandy mining soil to examine the suitability of compost amendment for the formation of stable soil organic matter (SOM). The stabilization process was characterized by measuring enrichment of OM and nitrogen in particle size fractions obtained after dispersion with different amounts of energy (ultrasonication and shaking in water), carbon mineralization, and amount of dissolved organic carbon (DOC). During the experiment, 17.1% of the organic carbon (OC) was mineralized. Organic carbon enrichment in the < 20-micron particle size fraction at the beginning of the experiment was in the range of natural soils with similar texture. Within 12 mo, a distinct OC redistribution from coarse into fine fractions was found with both dispersion methods. The accumulation of OC was more pronounced for the size separates obtained by ultrasonication, where the carbon distribution between 0.45- to 20-micron particle size fractions increased from 30% at the beginning to 71% at the end of the experiment. Dissolved organic carbon contents ranged between 50 and 68 g kg-1 OC and decreased during the incubation. In conclusion, the exponential decrease of carbon mineralization and the OC enrichment in the fine particle size fractions both indicated a distinct OM stabilization in the mining soil.  相似文献   

12.
Both the bioavailability of a trace metal (TM) in a soil and the risk of leaching to the ground water are linked to the metals concentration in the soil solution. Sampling soil solution by tension lysimetry with suction cups is a simple and established technique that is increasingly used for monitoring dissolved TM in soils. Of major concern, however, is the sorption of TM by the walls of the samplers. Metal sorption by different materials used in suction cups can vary widely, depending also on the chemistry of the soil solution. We compared the sorption of Cu, Zn, Cd, and Pb by different standard-size and micro suction cups in the laboratory at two pH values (4.5 and 7.5 or 8.0) in absence and presence of dissolved organic carbon (DOC). In addition, we investigated the sorption of DOC from different origins by the cup materials. At both pH values, the weakest sorption of all four TMs was exhibited by standard-size suction cups based on nylon membranes and by hollow fibers made from polyvinyl alcohol (PVA). At alkaline pH, borosilicate glass, ceramic materials, and polytetrafluorethylene (PTFE) mixed with silicate were characterized by generally strong sorption of all investigated TMs. In addition, Cu and Pb were strongly sorbed at low pH by PTFE-silicate and a ceramic material used for the construction of standard-size suction cups. On the other hand, sorption of Cu, Zn, and Cd by ceramic capillaries produced from pure aluminum oxide was negligible at low pH. Micro suction cups made of an unknown polymerous tube sorbed Cu strongly, but were well suited to monitor Zn, Cd, and Pb at low pH, and, in the presence of DOC, also at high pH. Major cations (Na+, Mg2+, K+, Ca2+) and anions (Cl-, NO3-, SO4(2-)) were not or very weakly sorbed by all cup materials, except for Mg2+, K+, and Ca2+ by borosilicate glass at pH 7.5. Trace metal sorption by suction cups was generally greatly reduced in the presence of DOC, especially at alkaline pH. The sorption of DOC itself depended on its source. Dissolved organic carbon from leaf litter extracts with a probably large hydrophobic fraction was sorbed more strongly than mainly hydrophilic DOC from a mineral soil solution.  相似文献   

13.
Molecular-level sorption behavior of monoaromatic compounds in suspensions of water-dispersable clay components was studied by measuring 2H nuclear magnetic resonance (NMR) spin-spin relaxation times (T2). In general, decreased T2 values indicate stronger solute-sorbent interactions and increased sorption of the solute. A decreasing trend for T2 values in the order benzene > fluorobenzene > toluene (-C6D5 moiety) was observed, which was probably caused by the hydrophobic effect. The T2 values for benzene and the -C6D5 moiety of toluene increased with increasing pH, whereas the trend with pH was much weaker and less consistent for fluorobenzene and the methyl group of toluene. Conversely, no clear relationship was found between T2 values and pH for dichloromethane. These contrasting results cannot be explained by the pH-dependent self-assembly and hydrophobicity of humics. Instead, directed specific forces, including hydrogen bonding, cation-pi interactions, and aromatic-aromatic interactions, are proposed between the benzene ring of monoaromatic solutes and soil organic matter (SOM). Substituents of benzene affect these interactions by varying the pi electron density. When the soil fraction was treated with NaOH to remove humic and fulvic acids, T2 values for the different monoaromatic solutes were surprisingly lower compared with those for the untreated soil fraction. This result is probably caused by the increased ratio of solutes adsorbed to "hard" or "glassy" SOM components, which leads to less mobile sorbed solute molecules, after removing NaOH-extractable humics that contain more "soft" or "rubbery" SOM components.  相似文献   

14.
Copper and zinc speciation in the solution of a soil-sludge mixture   总被引:2,自引:0,他引:2  
Only a small fraction of the transition metals content in sludge-amended soils is soluble, and yet this fraction is a major contributor to the mobility and bioavailability of the metals. The chemical species of zinc (Zn) and copper (Cu) in the soluble fractions of soil-sludge mixtures were characterized with respect to their charge, molecular weight, and stoichiometry using ion exchange resin and gel chromatography procedures. The change in the metals' species with time after sludge application was followed for 100 d. Copper in the water extracts of the sludge-sand mixtures was found almost exclusively in low molecular weight (below 1000 Da) complexes. Higher molecular weight (around 2500 Da) dissolved organic carbon (DOC) was present in the extracts as well, but this DOC fraction exhibited little complexation. Copper was present in the extracts mainly as negatively charged species throughout the incubation period, and zinc tended to form zwitter ions. As incubation progressed, the relative content of positively charged Zn in solution increased. Complexation capacity of DOC in sludge water extract, extrapolated to infinite dilution, was 8.75 mM Ca g(-1) DOC. When the complexation capacity of the extract is near saturation, a mean Cu-DOC complex can be defined. It consists of 1.9 Cu atoms attached to DOC species containing 5.6 C atoms. Thus, the organic Cu complexes consist primarily of about two Cu ions attached to DOC species containing only five or six C atoms. Amino acids and small peptides or polycarboxylic acids, such as citric acid, thus may be important complexing agents of the metal.  相似文献   

15.
Certain organic carbon moieties in drinking source waters of the Sacramento-San Joaquin Delta can react with chlorine during disinfection to form potentially carcinogenic and mutagenic trihalomethanes. The properties of reactive organic carbon in Delta waters, particularly those of soil origin, have been poorly understood. This study attempts to characterize trihalomethane reactivity of soil organic carbon from three representative Delta peat soils. Soil organic carbon was extracted from all three soils with either deionized H2O or 0.1 M NaOH and sequentially separated into humic acids, fulvic acids, and nonhumic substances for quantitation of trihalomethane formation potential. Water-extractable organic carbon represented only 0.4 to 0.7% of total soil organic carbon, whereas NaOH extracted 38 to 51% of total soil organic carbon. The sizes and specific trihalomethane formation potential (STHMFP) of individual organic carbon fractions differed with extractants. Fulvic acids were the largest fraction in H2O-extractable organic carbon, whereas humic acids were the largest fraction in NaOH-extractable organic carbon. Among the fractions derived from H2O-extractable carbon, fulvic acids had the greatest specific ultraviolet absorbance and STHMFP and had the majority of reactive organic carbon. Among the fractions from NaOH-extractable organic carbon, humic acids and fulvic acids had similar STHMFP and, thus, were equally reactive. Humic acids were associated with the majority of trihalomethane reactivity of NaOH-extractable organic carbon. The nonhumic substances were less reactive than either humic acids or fulvic acids regardless of extractants. Specific ultraviolet absorbance was not a good predictor of trihalomethane reactivity of organic carbon fractions separated from the soils.  相似文献   

16.
Sewage sludge (SS) can be applied to cropland to supply and recycle nutrients and organic carbon. Potentially toxic elements in the sludge, however, are of environmental concern. This study evaluates the changes in chemical speciation of Zn in three representative pristine soils of the Pampas Region, Argentina, measured with sequential extraction over a one-year period. Pure SS or SS containing 30% (DM) of its own incineration ash (AS) was applied to the soils at an application rate of 150Mgha(-1). Zn was sequentially fractionated into exchangeable, organically bound, inorganic and residual fractions. The application of the SS and AS amendments significantly increased Zn concentration in all soil fractions at each sampling date. At day 1, Zn was mainly found in the residual fraction. A year after the application of the amendments, redistribution towards the inorganic fraction was observed (41-76% of total Zn content). Zn found in exchangeable and inorganic fractions depended on soil pH rather than on the type of soil used. A negative and significant correlation was found between exchangeable Zn concentrations and soil pH (r=0.94), and a positive and significant correlation between inorganic Zn concentrations and soil pH (r=0.92). For each amended soil and sampling date, no significant differences were observed between SS or AS treatments for the exchangeable fraction. Moreover, the use of AS did not cause significant differences in Zn concentration in the other soil fractions compared to SS. Based on these results, land spreading of AS may be similar to SS diaposal in terms of Zn mobility.  相似文献   

17.
Arsenic remobilization in a shallow lake: the role of sediment resuspension   总被引:1,自引:0,他引:1  
Oxic resuspension occurs regularly in shallow lakes, yet its role as a mechanism for contaminant remobilization remains ill defined. This study investigated contaminant remobilization during sediment resuspension and determined whether changes in contaminant sediment partitioning reflected the mechanisms controlling remobilization. Arsenic-contaminated sediment from a shallow wetland was subjected to simulated resuspension under a range of differing initial pH conditions. The effect of resuspension on As partitioning was evaluated using a fractionation scheme targeting the dissolved, ion exchangeable, carbonate, organic, amorphous iron oxide, crystalline iron oxide, and apatite fractions. Rate investigations demonstrated that arsenic remobilization occurred on timescales similar to resuspension events, with concentrations reaching steady state within 24 h. The sediment also buffered slurry pH to 8.3 in experiments where the initial pH was between 4 and 10. This pH regulation was attributed to carbonate dissolution or acid-base equilibria of surface base functional groups, although iron oxide and organic matter dissolution did occur in experiments with an initial pH outside this range. Remobilization caused losses in arsenic associated with the ion exchangeable, organic, and amorphous iron fractions but changes in initial pH have a negligible effect on arsenic remobilization or partitioning within the well-buffered region. Resuspension released approximately 20% of the total sediment arsenic, although calculations indicated that a single resuspension event would not significantly change water column arsenic concentrations. While not conclusively proving the mechanisms of remobilization, fractionation gave valuable insight into the effect of sediment resuspension on contaminant remobilization.  相似文献   

18.
Establishing a simple yet reliable compost stability test is essential for a better compost quality control and utilization efficiency. The objective of this study was to examine the relationship between extractable organic carbon (OC) and compost stability based on 18 compost samples from five composting facilities. The compost samples were extracted sequentially with water for 2 h [water(2h)] and 0.1 M NaOH for 2 and 24 h [NaOH(2h) and NaOH(24h), respectively]. The extractable OC was further separated into fulvic acid (FA) and humic acid (HA) fractions by adjusting the pH to <2. The mass specific absorbance (MSA) of OC in the six fractions was measured. Compost stability was estimated with a CO2 evolution method. The extractable OC concentration was influenced by the total volatile solids and decreased with curing time for compost with a high level of extractable OC. The OC levels in each fraction were significantly correlated (p < 0.05) to each other except for the water(2h)-extractable HA. In addition, all the FA and HA fractions except for water(2h)-extractable HA were highly (P < 0.01) and linearly correlated to CO2 evolution, but multiple regression showed that NaOH(24h)-extractable OC was insignificant for CO2 evolution. The relatively high slope of NaOH(2h)-extractable FA versus CO2 evolution suggests that this fraction may contribute the most to compost CO2 evolution. The water(2h)- and/or NaOH(2h)-extractable FA tests are recommended for measuring compost stability because of their high correlation with CO2 evolution. This estimation can be obtained through a simple photometric method covering a wide range of carbon concentrations up to 4,000 mg L(-1).  相似文献   

19.
The remobilization and the fate of 14C-ring labeled atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) bound residues was examined in relation with the turnover of natural soil organic matter. Soil fractions of a brown soil and a rendzina were incubated under controled laboratory conditions. The mineralization of natural organic matter and atrazine-bound residues was respectively estimated by the amounts of CO2 and 14CO2 evolved during the incubation. The remobilization and distribution of 14C residues among the soil organic fractions were achieved after physical-chemical extractions of the samples. Comparisons of samples in abiotic and biotic conditions allowed us to assess the influence of microbial activity on the fate of atrazine-bound residues. The mineralization curves showed that natural organic matter and atrazine-bound residues had similar decomposition patterns. After 100 d of incubation, 0.8 to 3.6% of total organic C was evolved as CO2, while only 0.1% of the initial radioactivity was mineralized as CO2, and 7 to 15% was becoming extractable with water and methanol. Few differences were observed in the distribution of residues within organic compounds for both fractions of the rendzina, except a decrease of the 14C radioactivity of the 50- to 5000-microm fraction and a slight increase of that of humin. For the 0- to 5000-microm brown soil fraction, increased radioactivity in humin at the expense of humic (HA) and fulvic (FA) acids was detected after incubation, while for the 0- to 50-microm fraction more radioactivity was recovered with FA.  相似文献   

20.
Contamination of freshwater by estrogens from manure applied to agricultural land is of grave concern because of the potentially harmful effects on aquatic life and human health. Recent developments in liquid manure (slurry) management include partial removal of particulate slurry dry matter (PSDM) by separation technologies, which may also remove parts of the estrogens and enhance infiltration of the slurry on field application and hence the interaction between estrogens and the soil matrix. This study investigated how 17β-estradiol (E2), a natural estrogen commonly found in pig manure, sorbs to agricultural soils, to different size fractions of pig slurry separates, and to soils amended with each size fraction to simulate conditions in the soil-slurry environment. A crude fiber fraction (SS1) was prepared by sieving (<500 μm) the solids removed by an on-farm separation process. Three other size fractions (SS2 > SS3 > SS4) were prepared from the liquid fraction of the separated slurry by sedimentation and centrifugation. Sorption experiments were conducted in 0.01 mol L(-1) CaCl(2) and in natural pig urine matrix. Sorption in 0.01 mol L(-1) CaCl(2) was higher than that in pig urine for all solids used. Sorption of E2 to soil increased with its organic carbon content for both liquid phases. The solid-liquid partition coefficients of slurry separates were 10 to 30 times higher than those of soils, but the organoic carbon normalized partition coefficient values, reflecting sorption per unit organic carbon, were lower for slurry separates. Mixing slurry separates with soil increased the sorption of E2 to the solid phase significantly in the order: SS1 < SS3 < SS2 for both liquid phases. In contrast, SS4 reduced the sorption of E2 to the solid phase by increasing the sorption to suspended or dissolved organic matter. The study suggested that potentially 50 to 75% of E2 in slurry can be removed from the liquid fraction of slurry by physical separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号