首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
T. Tsuda  S. Aoki  M. Kojima  T. Fujita 《Chemosphere》1992,25(12):1945-1951
Bioconcentration and excretion of 8 organophosphorous pesticides were studied for willow shiner ( ). The average bioconcentration factors (BCF) in the whole body of the fish after 24 – 168 hr exposure were 0.8 for dichlorvos, 76 for salithion, 18 for methidathion, 29 for pyridaphenthion, 481 for fenthion and 36 for phosmet, Further, the BCF values of the other pesticides after 168 hr exposure were 713 for phenthoate and 1682 for EPN. The correlation between n-octanol-water partition coefficients (POW) and BCF in willow shiner was investigated for 19 pesticides studied here and already reported. The correlation factor (r) was not so high (0.6819, n=19) but higher (0.9085, n=18) in case excluding captan. The excretion rate constants (k) from the whole body of willow shiner were 0.20 hr−1 for salthion, 0.05 hr−1 for phenthoate, 0.27 hr−1 for methidathion, 0.20 hr−1 for pyridaphenthion, 0.07 hr−1 for fenthion, 0.04 hr−1 for EPN and 0.28 hr−1 for phosmet.  相似文献   

2.
Bioconcentration and uptake kinetics of chlorobenzenes in soy-bean roots   总被引:1,自引:0,他引:1  
H. Kraaij  D.W. Connell 《Chemosphere》1997,34(12):2607-2620
Excised soy-beanroots were exposed to an aqueous solution of five homologous chlorobenzenes in constant concentration. The results were in general agreement with water-lipid partitioning. The relationship between the bioconcentration factor and the octanol-water partition coëfficiënt (KOW) can be used to estimate bioconcentration. Effective equilibrium was reached within 2.5 hours for 1,2-di-, 1,3,5-tri- and 1,2,3,4-hexachlorobenzene and after a mean of 10.1 and 17.9 hours for penta- and hexachlorobenzene respectively. For 1,2-dichlorobenzene, 1,3,5-trichlorobenzene and 1,2,3,4-tetrachlorobenzene the elimination rate constant was > 4.1, and 0.46 and 0.30 hr−1 for penta- respectively hexachlorobenzene. In the range log Kow 4.56–5.77, k2 was negatively correlated with log KOW but k1 was not correlated with log KOW..  相似文献   

3.
4.
Among the many larvicides tested for the control of s.l. larvae, the vector of human onchocerciasis in West Africa, pyraclofos proved to be 100% effective at 100 μg × L−1 for 10 min in river, with a carry of 20 km at 100 m3 × sec−1. Tests were then performed both in laboratory and field conditions to evaluate its toxicity on the non-target aquatic fauna. In experimental short-term gutter tests, the detachment of the total benthic insects was 35% at 100 μg × L−1 for 10 min against 17% for temephos at the same dose and 59% for chlorphoxim at 50μg × L−1 for 10 min. , and were the most affected organisms. The treatment of a river resulted in a considerable detachment of the same taxonomic groups, plus Orthocladiinae. On the other hand, investigations conducted in tanks showed that the 24-hr LC50 for is 150 μg × L−1 and that for 170 μg × L−1, values which are not very different from the operational dose of the larvicide (100 μg × L−1 for 10 min.). Nevertheless, in a river, no fish mortality was recorded. Based on fish LC50 and drift of benthic insects, pyraclofos at 100 μg × L−1 was judged to be less toxic to aquatic fauna in the short term than permethrin and carbosulfan.  相似文献   

5.
Determination of triazines herbicides (atrazine and simazine) by high performance liquid chromatography (HPLC) in samples of trophic chain were worked out. Determination limits of 0.5 μg g−1 for atrazine, 0.8 μg g−1 for simazine with pesticides recovery of 70–77% in trophic chain samples were obtained. The content of simazine in soils was in range 1.72–57.89 μg g−1, in grass 5–88 μg g−1, in milk 2.32–15.29 μg g−1, in cereals 10.98–387 μg g−1, in eggs 30.14–59.48 μg g−1, for fruits: 2.45–6.19 μg g−1. The content of atrazine in soils was in range 0.69–19.59 μg g−1, in grass 7.85–23.85 μg g−1, in cereals 1.88–43.08 μg g−1. Cadmium, lead and zinc were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in the same samples as atrazine and simazine. Determination limits for cadmium 5 × 10−3 μg g−1, for lead 1 × 10−2 μg g−1, and for zinc 0.2 × 10−3 μg g−1, were obtained. The content of cadmium in soil was in range 0.13–5.89 μg g−1, in grass 114–627.72 × 10−3 μg g−1, in milk 8.88–61.88 × 10−3 μg g−1, in cereals 0.20–0.31 μg g−1, in eggs 0.11–0.15 μg g−1, in fruits 0.23–0.59 μg g−1. The content of lead in soils was in range 0.57–151.50 μg g−1, in grass 0.16–136.57 μg g−1, in milk 1.16–3.74 μg g−1, in cereals 1.05–5.47 μg g−1, in eggs 5.79–55.87 μg g−1, in fruits 21.00–87.36 μg g−1. Zinc content in soil was in range 9.15–424.5 μg g−1, in grass 35.20–55.87 μg g−1, in milk 20.00–34.38 μg g−1, in cereals 14.94–28.78 μg g−1, in eggs 15.67–32.01 μg g−1, in fruits 14.94–18.88 μg g−1.

Described below extraction and mineralization methods for particular trophic chains allowed to determine of atrazine, simazine, cadmium, lead and zinc with good repeatability and precision. Emphasis was focused on liquid–liquid extraction and solid-phase extraction of atrazine and simazine from analysed materials, as well as, on monitoring the content of herbicides and metals in soil and along trophic chain. Higher concentration of pesticides in samples from west region of Poland in comparison to that of east region is likely related to common applying them in Western Europe in relation to East Europe. The content of metals strongly depends on samples origin (industry area, vicinity of motorways).  相似文献   


6.
Deng J  Jiang X  Zhang X  Hu W  Crawford JW 《Chemosphere》2008,71(11):2150-2157
Contaminant transport in soils is complicated and involves some physical and chemical nonequilibrium processes. In this research, the soil column displacement experiments of Cl and atrazine under different flow velocities were carried out. The data sets of Cl transport in sandy loam fitted to the convection dispersion equation (CDE) and the two-region model (TRM) indicated that the effects of physical nonequilibrium process produced by immobile water on the breakthrough curves (BTCs) of Cl and atrazine transport through the repacking soil columns were negligible. The two-site model (TSM) and the continuous time random walk (CTRW) were also used to fit atrazine transport behavior at the flow rate of 19.86 cm h−1. The CTRW convincingly captured the full evolution of atrazine BTC in the soil column, especially for the part of long tailing. However, the TSM failed to characterize the tailing of atrazine BTC in the soil column. The calculated fraction of equilibrium sorption sites, F, ranging from 0.78 to 0.80 for all flow rates suggested the contribution of nonequilibrium sorption sites to the asymmetry of atrazine BTCs. Furthermore, the data sets for the flow rates of 6.68 cm h−1 and 32.81 cm h−1 were predicted by the TSM and the CTRW. As to the flow rate of 6.68 cm h−1, the CTRW predicted the entire BTC of atrazine transport better than the TSM did. For the flow rate of 32.81 cm h−1, the CTRW characterized the late part of the tail better, while the TSM failed to predict the tailings of atrazine BTC.  相似文献   

7.
Kang YS  Yamamuro M  Masunaga S  Nakanishi J 《Chemosphere》2002,46(9-10):1373-1382
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/DFs) were detected in waterfowl such as common cormorants, tufted ducks, and their prey, namely fish and bivalves from Lake Shinji, Japan. The concentration of total PCDDs/DFs-TEQ was found to be higher in the muscle tissues of common cormorants than in those of tufted ducks. The results of hierarchical cluster analysis implied that the residue distribution pattern of PCDD/DF homologues was considerably different between these two species. Furthermore, biomagnification factors (BMFs) were estimated from bivalves as prey to tufted duck muscles as target organs. Despite the highest concentrations of 1,3,6,8- and 1,3,7,9-TeCDD in tufted ducks and their prey, however, the BMFs of these isomers were calculated to be lower than those of the toxic 2,3,7,8-substituted PCDDs/DFs. On the other hand, log BMF of toxic 2,3,7,8-substituted PCDDs/DFs were significantly higher for lower chlorinated isomers than those of the higher chlorinated isomers. The biota-sediment accumulation factors (BSAFs) of PCDDs/DFs were also estimated using shijimi clam and fish samples against sediment from Lake Shinji. The average BSAFs were estimated and ranged from 4.0×10−3 to 2.2×10−1 and 2.0×10−4 to 2.0×10−1 for bivalve and fish samples, respectively. Based on calculated BMFs and BSAFs, the total PCDD/DF-TEQ levels in the tufted duck were estimated to have been lowest (2.0 pg TEQ/g dry weight basis) in 1947 and highest (9.8 pg TEQ/g) in 1971.  相似文献   

8.
The influence of intact (FLT) and photomodified (phFLT) fluoranthene (0.05, 0.5 and 5 μmol l−1) and herbicide Basagran (5, 20, 35 and 50 nmol l−1) on the germination, growth of seedlings and photosynthetic processes in pea plants (Pisum sativum L., cv. Garde) was investigated. The germination was significantly inhibited already by the lowest concentration (0.05 μmol l−1) of FLT and phFLT, while Basagran caused inhibition only in higher concentrations (35 and 50 nmol l−1). The growth of roots was significantly inhibited by higher concentration 5 μmol l−1 of both FLT and phFLT and the shoot of seedlings was significantly influenced only by photomodified form. The length of root and shoot was inhibited already by concentration 5 nmol l−1 of Basagran. Organic compounds applied on chloroplasts suspension influenced primary photochemical processes of photosynthesis. In chlorophyll fluorescence parameters, the significant increase of F0 values and the decrease of FV/FM and ΦII values by application of FLT (0.5 and 5 μmol l−1) and phFLT (0.05, 0.5 and 5 μmol l−1) was recorded. The maximum capacity of PSII (FV/FM) was influenced by the highest (50 nmol l−1) and the effective quantum yield of PSII (ΦII) already by the lowest (5 nmol l−1) concentration of Basagran. Hill reaction activity decreased and was significantly inhibited by higher concentration (0.5 and 5 μmol l−1) of FLT and phFLT and already by the lowest concentration (5 nmol l−1) of Basagran.  相似文献   

9.
Yacob S  Hassan MA  Shirai Y  Wakisaka M  Subash S 《Chemosphere》2005,59(11):1575-1581
Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8 l min−1 m−2 and 9.8 l min−1 m−2. Total CH4 emission per open digesting tank was 518.9 kg day−1. Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated.  相似文献   

10.
Neamtu M  Siminiceanu I  Kettrup A 《Chemosphere》2000,40(12):1407-1410
The photodegradation of five representative nitromusk compounds in water has been performed in a stirred batch photoreactor with a UV low-pressure immersed mercury lamp, at constant temperature and different doses of hydrogen peroxide. The rate constants have been calculated on the basis of experimental data and a postulated first-order kinetic model. The rate constants, at 298 K and a dose of 1.1746 μmol l−1 H2O2 ranges from 0.3567 × 10−3 s−1 for musk tibetene, to 1.785 × 10−3 s−1 for musk ambrette.  相似文献   

11.
An increasing percentage of agricultural land in Germany is used for oil seed plants. Hence, rape has become an important agricultural plant (in Saxony 1998: 12% of the farmland) in the recent years. During flowering of rape along with intensive radiation and high temperatures, a higher production and emission of biogenic VOC was observed. The emissions of terpenes were determined and more importantly, high concentrations of organic carbonyl compounds were observed during this field experiment. All measurements of interest have been carried out during two selected days with optimal weather conditions. It is found that the origin or the mechanism of formation of different group of compounds had strong influence on the day to day variation of their concentrations. The emission flux of terpenes from flowering rape plants was determined to be 16–32 μg h−1 m−2 (30–60 ng h−1 per g dry plant––540–1080 ng h−1 per plant), in total. Limonene, -thujene and sabinene were the most important compounds (about 60% of total terpenes). For limonene and sabinene reference emission rates (MS) and temperature coefficients were determined: βlimonene=0.108 K−1 and MS=14.57 μg h−1 m−2; βsabinene=0.095 K−1 and MS=5.39 μg h−1 m−2.

The detected carbonyl compound concentrations were unexpectedly high (maximum formaldehyde concentration was 18.1 ppbv and 3.4 ppbv for butyraldehyde) for an open field. Possible reasons for these concentrations are the combination of primary emission from the plants induced by high temperature and high ozone stress, the secondary formation from biogenically and advected anthropogenically emitted VOC at high radiation intensities and furthered by the low wind speeds at this time.  相似文献   


12.
Zhu R  Sun L 《Chemosphere》2005,59(11):1583-1593
Methane fluxes were measured from three exposed tundra sites and four snowpack sites on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were −15.3 μg m−2 h−1 and −14.3 μg m−2 h−1, respectively. The fluxes from tundra site with fresh penguin dropping addition showed positive values with the average of 36.1 μg m−2 h−1, suggesting that the deposition of fresh droppings greatly enhanced CH4 emissions from the poor Antarctic tundra during penguin breeding periods. The summertime variation in CH4 flux was correlated with surface ground temperature and the precipitation. The correlation between the flux and PT0, which is the product of the precipitation and surface ground temperature, was quite strong. The diurnal cycle of CH4 flux from the tundra soils was not obtained due to local fluky weather conditions. The fluxes through four snowpack sites were also obtained by the vertical CH4 concentration gradient and their average fluxes were −46.5 μg m−2 h−1, −28.2 μg m−2 h−1, −46.4 μg m−2 h−1 and −17.9 μg m−2 h−1, respectively, indicating that tundra soils under snowpack also consume atmospheric CH4 in the maritime Antarctic; therefore these fluxes could constitute an important part of the annual CH4 budget for Antarctic tundra ecosystem.  相似文献   

13.
Chloroform in the environment: occurrence,sources, sinks and effects   总被引:4,自引:0,他引:4  
McCulloch A 《Chemosphere》2003,50(10):1291-1308
The chloroform flux through the environment is apparently constant at some 660±220 Gg yr−1 (±1σ) and about 90% of the emissions are natural in origin: the largest single source being in offshore sea water (contributing 360±90 Gg yr−1), with soil processes the next most important (220±100 Gg yr−1). Other natural sources, mainly volcanic and geological, account for less than 20 Gg yr−1. The non-natural sources total 66±23 Gg yr−1 and are much better characterised than the natural sources. They are predominantly the result of using strong oxidising agent on organic material in the presence of chloride ion, a direct parallel with the natural processes occurring in soils.

Chloroform partitions preferentially into the atmosphere; the equilibrium distribution is greater than 99% and the average global atmospheric concentration has been calculated to be 18.5 pmol mol−1. Atmospheric oxidation, the principal removal process, is approximately in balance with the identified source fluxes. Chloroform is widely dispersed in the aquatic environment (even naturally present in some mineral waters). Consequently, it is also widely dispersed in the tissue of living creatures and in foodstuffs but there is little evidence of bioaccumulation and the quantities in foodstuffs and drinking water are not problematical for human ingestion at the highest concentrations found. Definitive studies have shown that current environmental concentrations of chloroform do not present an ecotoxicological risk, even to fish at the embryonic and larval stages when they are most susceptible.

By virtue of the very small amounts that actually become transported to the stratosphere, chloroform does not deplete ozone materially, nor is it a photochemically active volatile organic compound (VOC). It has a global warming potential that is less than that of the photochemically active VOCs and is not classed as a greenhouse gas.  相似文献   


14.
Yu K  DeLaune RD  Boeckx P 《Chemosphere》2006,65(11):2449-2455
Wetland loss along the Louisiana Gulf coast and excessive nitrate loading into the Gulf of Mexico are interrelated environmental problems. Nitrate removal by soil denitrification activity was studied in a ponded freshwater marsh receiving diverted Mississippi River water for the purpose of reversing or slowing wetland loss. Labeled 15N-nitrate was applied at 3.8 g N m−2 into four replicate study plots after removing above ground vegetation. Nitrogen gas (N2) and nitrous oxide (N2O) emissions from the plots were determined by isotope ratio mass spectrometry (IRMS). Nitrous oxide emissions were also compared with the results determined by gas chromatograph (GC). Results showed that it took 2 weeks to remove the added nitrate with N2O emission occurring over a period of 4 d. The apparent denitrification dynamics were assumed to follow the Michaelis–Menten equation. The maximum denitrification rate and Km value were determined as 12.6 mg N m −2 h−1, and 6.5 mg N l−1, respectively. Therefore the maximum capacity for nitrate removal by the marsh soil would be equivalent to 110 g N m−2 yr−1, with more than 30% of nitrogen gas evolved as N2O. For typical nitrate concentrations in Mississippi River water of about 1 mg N l−1, nitrate would be removed at a rate of 14.7 g N m−2 yr−1 with N2O emission about 1.5%. A denitrification dynamic model showed that the efficiency of nitrate removal would largely depend on the water discharge rate into the ponded wetland. Higher discharge rate will result in less retention time for the water in the marsh where nitrate is denitrified.  相似文献   

15.
Wang D  He L  Shi X  Wei S  Feng X 《Chemosphere》2006,64(11):1845-1854
An investigation was conducted to estimate mercury emission to the atmosphere from different environmental surfaces and to assess its contribution to the local mercury budget in Chongqing, China. Mercury flux was measured using dynamic flux chamber (DFC) at six soil sites of three different areas (mercury polluted area, farmland and woodland) and four water surfaces from August 2003 to April 2004. The mercury emission fluxes were 3.5 ± 1.2–8.4 ± 2.5 ng m−2 h−1 for three shaded forest sites, 85.8 ± 32.4 ng m−2 h−1 for farming field, 12.3 ± 9.8–733.8 ± 255 ng m−2 h−1 for grassland sites, and 5.9 ± 12.6–618.6 ± 339 ng m−2 h−1 for water surfaces. Mercury exchange fluxes were generally higher from air/water surfaces than from air/soil surfaces. The mercury negative fluxes were found in tow soil sites at overcast days (mean = −6.4 ± 1.5 ng m−2 h−1). The diurnal and seasonal variations of mercury flux were observed in all sites. The mercury emission responded positively to the solar radiation, but negatively to the relative humidity. The mercury flux from air/soil surfaces was significantly correlated with soil temperature, which was well described by an Arrhenius-type expression with activation energy of 31.1 kcal mol−1. The annual mercury emission to the atmosphere from land surface is about 1.787 t of mercury in Chongqing.  相似文献   

16.
Yassaa N  Cecinato A 《Chemosphere》2005,60(11):1660-1666
The absolute contents and relative distributions of organic aerosols [n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic hydrocarbons (PAH)] were determined in torched gases emitted during the crude oil extraction and in the free atmosphere of the Hassi-Messaoud city (Algeria). Monocarboxylic acids, both saturated and monounsaturated (from 9802 to 20 057 ng m−3), accounted for the major fraction of the total particulate organic matter identified both in torch exhaust and atmospheric particulate. n-Alkanes were also abundant both in the direct emission (from 460 to 632 ng m−3) and city atmosphere (462 ng m−3) and displayed a peculiar fingerprint characterised by the presence of a set of branched congeners around even carbon-numbered homologues and a strong even-to-odd predominance along the whole carbon number range (C16–C34). Whilst n-alkan-2-ones were absent in the city and poor in smokes emitted from the torches (from 31 to 42 ng m−3), PAH were present at low extents in all sites (from 18 to 65 ng m−3). The incomplete thermal combustion of torched crude oil was very likely the main source of these particle-bound organic constituents in the city and its surrounding region.  相似文献   

17.
Xue N  Xu X  Jin Z 《Chemosphere》2005,61(11):951-1606
For screening 31 potential or suspected endocrine-disrupting pesticides in water and surface sediments, a multiresidue analysis method based on gas chromatography with electron capture detection (GC/ECD) was developed. Solid phase extraction (SPE) technology with Oasis® HLB cartridge was also applied in sample extraction. The relevant mean recoveries were 70–103% and 71–103% for water and sediment, respectively. Relative standard deviations (RSD) are 2.0–7.0%, 4.0–8.0% for water and sediment, respectively. Thirty one pesticides (-HCH, β-HCH, γ-HCH, δ-HCH, hexachlorobenzene (HCB), aldrin, heptachlor, endosulfan I & II, p,p′-DDD, o,p′-DDT, p,p′-DDT, p,p′-DDE, endrin aldehyde, endosulfan sulphate, methoxychlor, hepachlor epoxide, -chlordane, γ-chlordane, dieldrin, endrin, dicofol, acetochlor, alachlor, metolachlor, chlorpyriphos, nitrofen, trifluralin, cypermethrin, fenvalerate, deltamethrin) in water and surface sediment samples from Beijing Guanting reservoir were analyzed. Concentrations of pesticides ranged from 7.59 to 36.0 ng g−1 on a dry wt. basis for sediment samples, from 279.3 to 2740 ng l−1 for pore waters and from 48.8 to 890 ng l−1 for water samples, respectively, with a mean concentration of 10.7 ng g−1 in sediment, 735 ng l−1 in pore water and 295 ng l−1 in water, respectively. The data obtained provides information on the levels and sources of endocrine-disrupting pesticides in Guanting reservoir. These results underscore the need to improved environmental protection measures in order to reduce the exposure of the population and aquatic biota to these endocrine-disrupting compounds.  相似文献   

18.
Isoprene emission from tropical trees in Okinawa Island, Japan   总被引:1,自引:0,他引:1  
This study surveyed isoprene emission from 42 indigenous and exotic tropical trees in subtropic Okinawa, Japan. Of the 42 trees studied, 4 emitted isoprene at a rate in excess of 20 μg g−1 h−1, and 28 showed the rates of 1–10 μg g−1 h−1. The remainder emitted less than 1 μg g−1 h−1. The majority of trees in this study may therefore fall within the lower emitting species. However, species in Moraceae that is indigenous in Okinawa emitted isoprene at relatively higher rates with an average of 14.2 μg g−1 h−1. The highest emission rate of 107.1 μg g−1 h−1 for Ficus virgata yielded the area basis rate of 47.4 nmol m−2 s−1, which is almost equivalent to the rate of high emitting species. Furthermore, a linear relationship between light intensity and isoprene emission was noted with Ficus virgata up to 1700 μmol m−2 s−1. These findings may show the potential importance of subtropical areas as sources of isoprene to the atmosphere.  相似文献   

19.
AP Jackson  GH Eduljee 《Chemosphere》1994,29(12):2523-2543
A model has been developed to describe the transfer of PCDDs and PCDFs from sludge-amended soils to the human foodchain. The model is conservative and assumes that all foods consumed by an individual are derived from sludge-amended soils. Predicted concentrations of PCDDs and PCDFs in potatoes, cereals, root vegetables and leafy vegetables were in close agreement with mean concentrations reported in the food survey conducted by MAFF in the UK. Predicted concentrations in milk were well below the Maximum Tolerable Concentration adopted by MAFF. Assuming a half-life of ten years in sludge-amended soils, the maximum estimated incremental daily intake (IDI) predicted by the model following ten applications of sludge to agricultural land was 0.80 pg I-TEQ kg−1 day−1, representing an increase of approximately 45% on current levels of background exposure. For an individual whose diet is solely derived from sludge-amended soils, the total exposure is predicted to be approximately 181 pg I-TEQ day−1 or 2.6 pg I-TEQ kg−1 day−1. This compares with an average background exposure of approximately 2 pg I-TEQ kg−1 day−1, well within the TDI of 10 pg I-TEQ kg−1 day−1 and indicates that the application of sewage sludge to agricultural land under the conditions assumed would not appear to present a significant health risk under the conservative scenarios considered in this assessment.  相似文献   

20.
Hood ED  Thomson NR  Grossi D  Farquhar GJ 《Chemosphere》2000,40(12):1383-1388
Flushing soils contaminated with trichloroethylene (TCE) and perchloroethylene (PCE) with a permanganate (MnO4) solution has been shown to reduce the solvent content of the soil. Experiments were performed to quantify the rate at which KMnO4 oxidizes aqueous solutions of PCE over a range of concentrations. In a series of homogeneous reactors, aqueous phase PCE concentrations were monitored over time in nine experimental trials with excess oxidant concentrations ranging from 5 to 30 g/l. Analysis of the data was performed to quantify the oxidation reaction order with respect to PCE and KMnO4 and the reaction rate constant. The reaction between PCE and KMnO4 was determined to be first-order with respect to both PCE and KMnO4 with an overall specific reaction rate coefficient of 2.45±0.65 M−1 min−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号