首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper and iron isotope fractionation by plant uptake and translocation is a matter of current research. As a way to apply the use of Cu and Fe stable isotopes in the phytoremediation of contaminated sites, the effects of organic amendment and microbial addition in a mine-spoiled soil seeded with Helianthus annuus in pot experiments and field trials were studied. Results show that the addition of a microbial consortium of ten bacterial strains has an influence on Cu and Fe isotope fractionation by the uptake and translocation in pot experiments, with an increase in average of 0.99?‰ for the δ65Cu values from soil to roots. In the field trial, the amendment with the addition of bacteria and mycorrhiza as single and double inoculation enriches the leaves in 65Cu compared to the soil. As a result of the same trial, the δ56Fe values in the leaves are lower than those from the bulk soil, although some differences are seen according to the amendment used. Siderophores, possibly released by the bacterial consortium, can be responsible for this change in the Cu and Fe fractionation. The overall isotopic fractionation trend for Cu and Fe does not vary for pot and field experiments with or without bacteria. However, variations in specific metabolic pathways related to metal–organic complexation and weathering can modify particular isotopic signatures.  相似文献   

2.
The stable carbon isotope values of tetrachloroethene (PCE) and its degradation products were monitored during studies of biologically enhanced dissolution of PCE dense nonaqueous phase liquid (DNAPL) to determine the effect of PCE dissolution on observed isotope values. The degradation of PCE was monitored in a 2-dimensional model aquifer and in a pilot test cell (PTC) at Dover Air Force Base, both with emplaced PCE DNAPL sources. Within the plume down gradient from the source, the isotopic fractionation of dissolved PCE and its degradation products were consistent with those observed in biodegradation laboratory studies. However, close to the source zone significant shifts in the isotope values of dissolved PCE were not observed in either the model aquifer or PTC due to the constant input of newly dissolved, non fractionated PCE, and the small isotopic fractionation associated with PCE reductive dechlorination by the mixed microbial culture used. Therefore the identification of reductive dechlorination in the presence of PCE DNAPL was based upon the appearance of daughter products and the isotope values of those daughter products. An isotope model was developed to simulate isotope values of PCE during the dissolution and degradation of PCE adjacent to a DNAPL source zone. With the exception of very high degradation rate constants (>1/day) stable carbon isotope values of PCE estimated by the model remained within error of the isotope value of the PCE DNAPL, consistent with measured isotope values in the model aquifer and in the PTC.  相似文献   

3.
The aim of this study was to conceive a reactive transport model capable of providing quantitative site-specific enrichment factors for fractionation in 13C isotopic content during sorption. As test compound the model treats vanillin, for which the 13C isotopic content at natural abundance at each of the 8 carbon positions can be measured by quantitative 13C nuclear magnetic resonance spectrometry. This technique determines the isotope ratios with a resolution better than ±1‰ (0.1%) at each carbon position. Site-specific isotope fractionations were recorded in chromatography column experiments with silica RP-18 as stationary phase. The one dimensional reactive transport model accounted for the sorption/desorption behavior of 8 individual 13C-isotopomers and one 12C-isotopomer of vanillin and reproduced satisfactorily the bulk (average over the whole compound) fractionation observed during elution. After model calibration, the enrichment factors were fitted for each carbon site where a significant fractionation was recorded. To show the interest of such a transport model for environmental studies, the model, extended to three dimensions, was exploited to simulate reactive transport in an aquifer. These results show that significant 13C isotope fractionation is expected for 4 out of 8 13C-isotopomers in vanillin, and illustrate that bulk isotope ratios measured by conventional compound specific isotope analysis and mass spectrometry would hardly document significant isotope fractionations in vanillin. It is concluded that modeling of site-specific isotope ratios in molecules is a priori feasible and may help to quantify unknown processes in the environment.  相似文献   

4.
In the present study, controlled laboratory column experiments were conducted to understand the biogeochemical changes during the microbial sulfate reduction. Sulfur and oxygen isotopes of sulfate were followed during sulfate reduction in zero valent iron incubated flow through columns at a constant temperature of 20 ± 1 °C for 90 d. Sulfur isotope signatures show considerable variation during biological sulfate reduction in our columns in comparison to abiotic columns where no changes were observed. The magnitude of the enrichment in δ34S values ranged from 9.4‰ to 10.3‰ compared to initial value of 2.3‰, having total fractionation δS between biotic and abiotic columns as much as 6.1‰. Sulfur isotope fractionation was directly proportional to the sulfate reduction rates in the columns. Oxygen isotopes in this experiment seem less sensitive to microbial activities and more likely to be influenced by isotopic exchange with ambient water. A linear relationship is observed between δ34S and δ18O in biotic conditions and we also highlight a good relationship between δ34S and sulfate reduction rate in biotic columns.  相似文献   

5.
《Environmental Forensics》2002,3(3-4):341-348
Correlation of crude oils, or refined products, in the environment with suspected sources is typically undertaken through the use of GC and GCMS and in certain cases bulk carbon isotope compositions. However, with crude condensates, or refined products in particular, the absence, or low concentration, of biomarkers precludes their successful use for making unique correlations. An alternative and, sometimes, complimentary technique for correlation of such products is evolving through the use of combined gas chromatography–isotope ratio mass spectrometry (GCIRMS). This approach permits determination of the carbon and hydrogen isotopic composition of individual compounds in the crude oil or refined product to produce isotopic fingerprints for use in correlation studies. In this paper, it is proposed to review applications of GCIRMS to the correlation of various spilled products with their suspected sources in different environments. Whilst not proposing that this technique will replace GC or GCMS; it is proposed that GCIRMS is a very powerful tool to be used in conjunction with GC and GCMS to make such correlations. Although isotopic fractionation has been observed in some of the lighter components such as benzene and toluene, higher carbon numbered compounds, say above C10, do not appear to undergo any significant isotopic fractionation as a result of weathering. Furthermore with refined products, isotopic fractionation of the lighter components has the potential to demonstrate the onset of natural attenuation of refined products in the environment.  相似文献   

6.
Nitrogen in atmospheric particles in an urban environment is the result of complex primary and secondary processes, which renders identifying its origin somewhat complicated. Using the example of PM10 in the atmosphere of Paris (France), it is shown that the use of stable nitrogen-isotope compositions (δ15N) alleviates this difficulty and provides clear information on the sources of primary and possibly of secondary nitrogen. Characterization of emissions of the different types of emitters in the city (road traffic, waste incinerators and heating sources) shows that these are clearly discriminated by specific isotope signatures. δ15N is particularly useful in showing that a substantial portion of the nitrogen is the result of secondary reactions, reactions that are different in summer and winter, as are the corresponding pollution sources. While it is unclear, among point sources, what the winter source of primary nitrogen is, road traffic appear to be the source of primary nitrogen in summer. Identification of the sources of the secondary nitrogen strongly depends on the nitrogen isotope fractionations (Δ15N) associated to atmospheric conversion of NOx to nitrate, but hypothesises presented here hint at the possible corresponding pollution sources.  相似文献   

7.
Analytical models were developed that simulate stable isotope ratios of volatile organic compounds (VOCs) near a point source contamination in the unsaturated zone. The models describe diffusive transport of VOCs, biodegradation and source ageing. The mass transport is governed by Fick's law for diffusion. The equation for reactive transport of VOCs in the soil gas phase was solved for different source geometries and for different boundary conditions. Model results were compared to experimental data from a one-dimensional laboratory column and a radial-symmetric field experiment. The comparison yielded a satisfying agreement. The model results clearly illustrate the significant isotope fractionation by gas phase diffusion under transient state conditions. This leads to an initial depletion of heavy isotopes with increasing distance from the source. The isotope evolution of the source is governed by the combined effects of isotope fractionation due to vaporisation, diffusion and biodegradation. The net effect can lead to an enrichment or depletion of the heavy isotope in the remaining organic phase, depending on the compound and element considered. Finally, the isotope evolution of molecules migrating away from the source and undergoing degradation is governed by a combined degradation and diffusion isotope effect. This suggests that, in the unsaturated zone, the interpretation of biodegradation of VOC based on isotopic data must always be based on a model combining gas phase diffusion and degradation.  相似文献   

8.
The identification of unique isotopic, elemental, and molecular markers for sources of combustion aerosol has growing practical importance because of the potential effects of fine particle aerosol on health, visibility and global climate. It is urgent, therefore, that substantial efforts be directed toward the validation of assumptions involving the use of such tracers for source apportionment. We describe here three independent routes toward carbonaceous aerosol molecular marker identification and validation: (1) tracer regression and multivariate statistical techniques applied to field measurements of mixed source, carbonaceous aerosols; (2) a new development in aerosol 14C metrology: direct, pure compound accelerator mass spectrometry (AMS) by off-line GC/AMS (‘molecular dating’); and (3) direct observation of isotopic and molecular source emissions during controlled laboratory combustion of specific fuels. Findings from the combined studies include: independent support for benzo(ghi)perylene as a motor vehicle tracer from the first (statistical) and second (direct ‘dating’) studies; a new indication, from the third (controlled combustion) study, of a relation between 13C isotopic fractionation and PAH molecular fractionation, also linked with fuel and stage of combustion; and quantitative data showing the influence of both fuel type and combustion conditions on the yields of such species as elemental carbon and PAH, reinforcing the importance of exercising caution when applying presumed conservative elemental or organic tracers to fossil or biomass burning field data as in the first study.  相似文献   

9.
Application of the lead isotope method to differentiate between the local contribution of lead and its portion from long-range transport of air pollution from sources a few thousand kilometers away to the lead pollution level measured in the Oslo area in Norway is discussed. The 206Pb/204Pb ratio is of particular interest in this respect. The results of measurements presented in the paper show that phase-out of lead additives to gasoline in Northern Europe has not phased out the Pb contamination of the environment. The lead isotope method proved very useful to present a contribution of small local sources to the Pb contamination of the air in the Oslo area during the period when the combustion of gasoline, the major source of Pb contamination has been decreasing. Wood combustion is one of these sources in Norway. Lower impact of long-range transport of air pollutants emitted from sources in Eastern and Central Europe and transported with air masses to Scandinavia, during the recent 5 years, can also be traced utilizing isotopic ratios of lead. The application of tree-rings as environmental archives contributed significantly to elucidating the historical Pb pollution.  相似文献   

10.
Correlation of crude oils, or refined products, in the environment with suspected sources is typically undertaken through the use of GC and GCMS and in certain cases bulk carbon isotope compositions. However, with crude condensates, or refined products in particular, the absence, or low concentration, of biomarkers precludes their successful use for making unique correlations. An alternative and, sometimes, complimentary technique for correlation of such products is evolving through the use of combined gas chromatography-isotope ratio mass spectrometry (GCIRMS). This approach permits determination of the carbon and hydrogen isotopic composition of individual compounds in the crude oil or refined product to produce isotopic fingerprints for use in correlation studies. In this paper, it is proposed to review applications of GCIRMS to the correlation of various spilled products with their suspected sources in different environments. Whilst not proposing that this technique will replace GC or GCMS; it is proposed that GCIRMS is a very powerful tool to be used in conjunction with GC and GCMS to make such correlations. Although isotopic fractionation has been observed in some of the lighter components such as benzene and toluene, higher carbon numbered compounds, say above C 10 , do not appear to undergo any significant isotopic fractionation as a result of weathering. Furthermore with refined products, isotopic fractionation of the lighter components has the potential to demonstrate the onset of natural attenuation of refined products in the environment.  相似文献   

11.
The present paper examines the use of zinc isotopes as tracers of atmospheric sources and focuses on the potential fractionation of Zn isotopes through anthropogenic processes. In order to do so, Zn isotopic ratios are measured in enriched ores and airborne particles associated with pyrometallurgical activities of one of the major Pb–Zn refineries in France. Supporting the isotopic investigation, this paper also compares morphological and chemical characteristics of Zn particles collected on dry deposition plates (“environmental samples”) placed within a 5 km radius of the smelter, with those of Zn particles collected inside the plant (“process samples”), i.e. dust collected from the main exhaust system of the plant. To ensure a constant isotopic “supply”, the refinery processed a specific set of ores during the sampling campaigns, as agreed with the executive staff of the plant. Enriched ores and dust produced by the successive Zn extraction steps show strong isotope fractionation (from ?0.66 to +0.22‰) mainly related to evaporation processes within the blast furnaces. Dust from the main chimney displays a δ66Zn value of ?0.67‰. Application of the Rayleigh equation to evaluate the fractionation factor associated with the Zn vapor produced after a free evaporation gives a range of αore/vapor from 1.0004 to 1.0008. The dry deposits, collected on plates downwind of the refinery, display δ66Zn variations of up to +0.7‰. However, it is to be noted that between 190 and 1250 m from the main chimney of the refinery, the dry deposits show a high level of large (>10 μm) Zn, S, Fe and O bearing aggregates characterized by positive δ66Zn values (+0.02 to +0.19‰). These airborne particles probably derive from the re-suspension of slag heaps and local emissions from the working-units. In contrast, from 1720 to 4560 m, the dry deposits are comprised of small (PM10) particles, including spherical Zn-bearing aggregates, showing negative δ66Zn values (?0.52 to ?0.02‰). Our results suggest that the source of the distal dry fallouts is the main chimney plume, whose light Zn isotopic signature they preserve. Based on Zn isotopic analysis in combination with morphological and chemical characteristics of airborne particles, the present study suggests the traceability of smelter dusts by Zn isotopes.  相似文献   

12.
Sphagnum mosses received from a herbarium and collected recently from a peat bog surface, were used to assess the isotopic character of past and recent atmospheric Pb deposition in Switzerland and to constrain possible Pb sources. Lead removed from the moss surface was isotopically similar to that measured in the corresponding solid plant, suggesting that neither preservative actions for the herbarium samples nor dust had affected the isotopic composition of the samples. The addition of HCl to aqueous extracts to remove surface particles from the plants released more Pb compared to H2O alone. The changes in isotope ratios between Sphagnum collected during the past c. 130 yr were significantly greater than the small fluctuations between and among species collected at any one time. Three isotope ratio plots and emission inventories indicated that the most likely source of atmospheric Pb was coal-burning at the turn of the century, fly ash from waste incineration until approximately 1950, and gasoline combustion after that. The pollution record derived from the Sphagnum plants is in good agreement with other archives from Switzerland (peat, sediment, ice) and with other herbarium records in Europe.  相似文献   

13.
In order to assess the importance of mercury emissions from naturally enriched sources relative to anthropogenic point sources, data must be collected that characterizes mercury emissions from representative areas and quantifies the influence of various environmental parameters that control emissions. With this information, we will be able to scale up natural source emissions to regional areas. In this study in situ mercury emission measurements were used, along with data from laboratory studies and statistical analysis, to scale up mercury emissions for the naturally enriched Ivanhoe Mining District, Nevada. Results from stepwise multi-variate regression analysis indicated that lithology, soil mercury concentration, and distance from the nearest fault were the most important factors controlling mercury flux. Field and lab experiments demonstrated that light and precipitation enhanced mercury emissions from alluvium with background mercury concentrations. Diel mercury emissions followed a Gaussian distribution. The Gaussian distribution was used to calculate an average daily emission for each lithologic unit, which were then used to calculate an average flux for the entire area of 17.1 ng Hg m−2 h−1. An annual emission of ∼8.7×104 g of mercury to the atmosphere was calculated for the 586 km2 area. The bulk of the Hg released into the atmosphere from the district (∼89%) is from naturally enriched non-point sources and ∼11% is emitted from areas of anthropogenic disturbance where mercury was mined. Mercury emissions from this area exceed the natural emission factor applied to mercury rich belts of the world (1.5 ng m−2 h−1) by an order of magnitude.  相似文献   

14.
A model, which employs the use of high precision stable lead isotopic analyses, has been developed to estimate the age of hydrocarbon releases. The ALAS Model (Anthropogenic Lead ArchaeoStratigraphy) is based on calibrated, systematic increases in lead isotope ratios of gasolines caused by shifts in sources of lead ores used by the U.S. lead industry, including manufacturers of alkylleads, to more radiogenic Mississippi Valley Type (MVT) deposits. Acquisition of high quality samples (free product, gasoline-impacted soil and groundwater) of known age and subsequent analyses of the hydrocarbon component by high precision lead isotopic analyses by thermal ionization mass spectrometry (TIMS) have produced the ALAS Model calibration curve. Age uncertainties range from  ± 1 to 2 years for gasoline releases which occurred between 1965 and 1990, the major era of leaded gasoline usage. Analytical methods required to measure lead isotope ratios on ∼5 nanograms of lead with precisions and accuracy of < ± 0.1% (2SEM) are discussed in detail. Published lead isotopic measurements of gasoline-derived anthropogenic lead of samples throughout the United States are used to demonstrate the wide geographic range over which the ALAS Model may be applied. Two representative case studies involving an early 1970s free product release in California and the discrimination of a 1970s from modern unleaded gasoline release in Florida demonstrate the use of the model on single and multiple hydrocarbon releases, respectively, in different geographic regions of the United States. A third investigation focuses on the use of lead isotopes to correlate dissolved phase hydrocarbons with their source, in this case, unleaded (aka low lead) gasoline releases in New Jersey. Dissolved phase hydrocarbons (BTEX/MTBE) are shown to carry the lead isotopic signature of the unleaded gasoline into groundwater, allowing the specific source of the release to be identified. Investigations of lead isotopes as tracers of MTBE in groundwater are ongoing. However, both laboratory and field data indicate MTBE carries the lead isotopic signature of its unleaded gasoline source into groundwater, demonstrating the potential of the lead isotopic system as a discriminant of MTBE sources. Although developed to estimate the age of leaded gasoline releases, the ALAS Model has been successfully applied in studies requiring age dating of jet-A, diesel, kerosene, motor oil, and heating oil. These petroleum distillates are suspected of accidentally acquiring small, yet significant quantities of alkylleads during refining, allowing accurate ALAS Model ages to be determined. When lead levels in these petroleum distillates are within their normal range, typically tens to hundreds of ppb lead, it is possible to use lead isotopic ratios to correlate environmental releases of these products to their source or other releases.  相似文献   

15.
Trajectory cluster analysis and the potential source contribution function (PSCF) model have been used to investigate the source–receptor relationship for the total gaseous mercury (TGM) measured in the Canadian High Arctic (Alert, 82.5°N, 62.3°W) during 1995. Cluster analysis of 10-day back-trajectories in 1995 shows that the synoptic flows arriving at Alert are dominated by the air masses from the north. Long-range transport only occurs in the cold seasons while summertime flows tend to circulate in the Arctic Ocean. The potential source regions identified by the PSCF modeling include Eurasia and populated areas in the North America and Europe. Based on the modeling results, it is suggested that the elevated TGM concentrations found in the Arctic summer should be of geological origins, mainly from the evasion of volatile Hg0 from earth's surfaces. In the autumn and winter, mercury is transported to the receptor site from remote anthropogenic sources. The preferred sources of TGM in the spring cannot be clearly determined due to the Arctic springtime mercury depletion, which significantly reduces the number of trajectories contributing to PSCF values. Using TGM data of higher temporal resolution improves the sensitivity of the PSCF modeling results.  相似文献   

16.
Zero-valent iron (ZVI) permeable-reactive barriers have become an increasingly used remediation option for the in situ removal of various organic and inorganic chemicals from contaminated groundwater. In the present study a process-based numerical model for the transport and reactions of chlorinated hydrocarbon in the presence of ZVI has been developed and applied to analyse a comprehensive data set from laboratory-scale flow-through experiments. The model formulation includes a reaction network for the individual sequential and/or parallel transformation of chlorinated hydrocarbons by ZVI, for the resulting geochemical changes such as mineral precipitation, and for the carbon isotope fractionation that occurs during each of the transformation reactions of the organic compounds. The isotopic fractionation was modelled by formulating separate reaction networks for lighter ((12)C) and heavier ((13)C) isotopes. The simulation of a column experiment involving the parallel degradation of TCE by hydrogenolysis and beta-elimination can conclusively reproduce the observed concentration profiles of all collected organic and inorganic data as well as the observed carbon isotope ratios of TCE and its daughter products.  相似文献   

17.
Mercury concentrations, together with nitrogen and carbon stable isotope signatures, were determined in body feather samples from northern fulmars Fulmarus glacialis and great skuas Catharacta skua, and in different flight feathers from great skuas. There were no significant relationships between trophic status, as defined using isotope analysis, and mercury concentration in the same feather type, in either species. Mercury concentrations in body feather samples were markedly different between fulmars and skuas, reflecting differences in diet, but there was no corresponding difference in trophic status as measured through nitrogen stable isotope signatures. We conclude that mercury concentrations and stable isotope values in feathers are uncoupled, mercury concentrations apparently reflecting the body pool of accumulated mercury at the time of feather growth whilst stable isotope values reflect the diet at the time of feather growth. There were significant positive correlations between the different flight feathers of great skuas for all three parameters measured. These were strongest between primary 10 and secondary 8, suggesting that these two feathers are replaced at the same time in the moult sequence in great skuas. Stable isotope analysis of different feathers may provide a means of investigating moult patterns in birds.  相似文献   

18.
Concentrations and isotopic compositions (13C/12C) of aromatic hydrocarbons were determined in eight samples obtained from the strongly anoxic part of the leachate plume downgradient from the Vejen Landfill (Denmark), where methanogenic, sulfate-reducing and iron-reducing conditions were observed. Despite the heterogeneous distribution of the compounds in the plume, the isotope fractionation proved that ethylbenzene and m/p-xylene were subject to significant biodegradation within the strongly anoxic plume. The isotope fractionation factors (alphaC) for the degradation of the m/p-xylene (1.0015) and ethylbenzene (1.0021) obtained from the field observations were similar to factors previously determined for the anaerobic degradation of toluene and o-xylene in laboratory experiments, and suggest that in situ biodegradation is one major process controlling the fate of these contaminants in this aquifer. The isotope fractionation determined for 1,2,4-trimethylbenzene and 2-ethyltoluene suggested in situ biodegradation; however, the isotopic composition did not correlate well with the respective concentration as expressed by the Rayleigh equation. Some other compounds (1,2,3-trimethylbenzene, o-xylene, naphthalene and fenchone) did not show significant enrichments in delta13C values along the flow path. The compound concentrations were too low for accurate isotope analyses of benzene, toluene, 1- and 2-methylnaphthalene, while interferences in the chromatography made it impossible to evaluate the isotopic composition for 4-ethyltoluene, 1,3,5-trimethylbenzene and camphor.In addition to demonstrating the potential of assessing isotopic fractionation as a means for documenting the in situ biodegradation of complex mixtures of aromatic hydrocarbons in leachate plumes, this study also illustrates the difficulties for data interpretation in complex plumes and high analytical uncertainties for isotope analysis of organic compounds in low concentration ranges.  相似文献   

19.
Elemental (S and N) and isotopic (δ34S and δ15N) contents in the moss Haplocladium microphyllum at urban, rural and forested sites in acid rain area of South China have been analyzed for comparisons to show whether they are different and can be effectively used to identify S and N sources of atmospheric deposition. Average moss S content at rural sites (0.29 ± 0.06%) was found to be in between those at urban (0.35 ± 0.05%) and forested (0.25 ± 0.04%) sites, which are significantly different. Average N contents of urban (2.60 ± 0.56%) and rural mosses (2.84 ± 0.77%) are not significantly different, while both are significantly different to that of forested mosses at most areas, indicating that the atmosphere over rural sites has been polluted by N as seriously as that over urban sites. Nitrogen supply, relative to S supply, was in excess of the requirement for protein synthesis, especially at rural and forested sites. Moss stable isotope signatures have been proven to be effective tools for deciphering atmospheric S and N sources at these sites. Through moss δ34S signatures, we found that atmospheric S at urban and forested sites was mainly from local coal combustion and domestic biomass burning, respectively, whereas northerly air masses contributed more S to forested sites. The relatively negative moss δ15N values (?7.5 ± 3.0, ?3.4 ± 2.1 and ?0.8 ± 2.1‰) demonstrated that the main form in the N deposition was NHx in these sites. More negative δ15N signatures in urban mosses (?7.5 ± 3.0‰) indicated the contribution of NH3 released from untreated city sewage and wastes, while relatively less negative δ15N for rural and forested mosses (3.4 ± 2.1 and ?0.8 ± 2.1‰) was largely derived from agricultural NH3.  相似文献   

20.
Ratios of stable lead isotopes (204Pb, 206Pb, 207Pb, 208Pb) are used to characterize both spatial and temporal variations in anthropogenic emissions of industrial lead aerosols to the atmosphere of northwestern France. Differences in isotopic compositions of aerosols collected from a rural area (Wimereux) in the Nord-Pas de Calais region along the English Channel in 1982–1983 (206Pb/207Pb=1.108±0.005) and 1994 (206Pb/207Pb=1.148±0.003) are paralleled by similar variations in urban aerosols within France during the same period (e.g., 206Pb/207Pb=1.115±0.008 from 1981–1989 and 1.143±0.006 from 1992–1995). These results correlate well with recent findings in the Mediterranean basin (Alleman, 1997) where this radiogenicity increase is clearly associated with industrial sources other than leaded gasoline that has remained relatively constant during its phasing out (206Pb/207Pb=1.08–1.11). Here we used archived data, air mass trajectories and aerosol diameters combined with isotopic signatures to confirm this trend at a regional scale. Indeed, the main industrial signatures from lead smelting (206Pb/207Pb=1.133±0.001) and steel metallurgy (206Pb/207Pb=1.196±0.015) in northwestern France appear more radiogenic than that of leaded gasoline. The shift in isotopic compositions also conform with the systematic change in the mean size (diameter) of aerosols at Wimereux, which ranged from 0.30 to 0.61 μm in 1982–1984 and from 0.70 to 0.89 μm in 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号