首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Saadi I  Laor Y  Raviv M  Medina S 《Chemosphere》2007,66(1):75-83
Extremely high organic load and the toxic nature of olive mill wastewater (OMW) prevent their direct discharge into domestic wastewater treatment systems. In addition to the various treatment schemes designed for such wastewater, controlled land spreading of untreated OMW has been suggested as an alternative mean of disposal. A field study was conducted between October 2004 and September 2005 to assess possible effects of OMW on soil microbial activity and potential phytotoxicity. The experiment was carried out in an organic orchard located on a Vertisol-type soil (Jezre'el Valley, Israel) and included two application levels of OMW (36 and 72m(3)ha(-1)). Total microbial counts, and to less extent the hydrolytic activity and soil respiration were increased following the high OMW application level. A bench-scale lab experiment showed that the rate of OMW mineralization was mainly dependent on the general status of soil activity and was not related to previous acclimatization of the soil microflora to OMW. Soil phytotoxicity (% germination and root elongation) was assessed in soil extracts of samples collected before and after each OMW application, using germinating cress (Lepidium sativum L.) seeds. We found direct short-term effect of OMW application on soil phytotoxicity. However, the soil was partly or completely recovered between successive applications. No further phytotoxicity was observed in treated soils as compared with control soil, 3 months after OMW application. Such short-term phytotoxicity was not in correlation with measured EC and total polyphenols in the soil extracts. Overall, the results of this study further support a safe controlled OMW spreading on lands that are not associated with sensitive aquifers.  相似文献   

2.
Environmental Science and Pollution Research - Olive oil industry is economically important in Mediterranean countries. Disposal of olive mill waste (OMW) presents an environmental concern in those...  相似文献   

3.
Evaluation of olive oil mill wastewater toxicity on spinach   总被引:1,自引:1,他引:0  

Background, aim, and scope

Olive oil mill wastewater (OMW), a by-product of the olive oil extraction process, is annually produced in huge amounts in olive-growing areas and represents a significant environmental problem in Mediterranean areas. We studied the impact of OMW dilutions (1:20 and 1:10) on spinach plants in order to evaluate OMW dilutions as a low-cost alternative method for the disposal of this waste.

Materials and methods

The effects of OMW dilutions were evaluated on seed germination, shoot and root elongation, biomass production, nutrient uptake and translocation, ascorbic acid content, polyphenols, photosynthetic pigments, and photosynthetic performance of spinach.

Results

Plant biomass was more affected than plant height and total chlorophyll; carotenoid and ascorbic acid content progressively decreased with decreasing OMW dilution. Exposure to both OMW dilutions resulted in overaccumulation of total polyphenols, which were negatively correlated to plant biomass and nutrients. Nutrient (Fe, Ca, and Mg) content was insufficient leading to reduced growth. Water use efficiency decreased mainly due to decreased CO2 assimilation rate rather than to a decline of transpiration rate. Disturbances in photosystem II (PSII) photochemical efficiency could be better envisaged by the ratio between variable fluorescence and initial fluorescence (Fv/Fo), which showed much greater amplitude than the maximal photochemical efficiency of PSII photochemistry (Fv/Fm).

Conclusions

From the data obtained, it is suggested that 1:20 OMW dilutions are still phytotoxic and that higher OMW dilutions should be used in order to use this waste for the irrigation of spinach plants.  相似文献   

4.
Olive mill wastewater (OMW) is a problematic by-product of olive oil production. While its high organic load and polyphenol concentrations are associated with troublesome environmental effects, its rich mineral and organic matter contents represent valuable nutrients. This study aimed to investigate the valorization of this waste biomass as a potential soil conditioner and fertilizer in agriculture. OMW was assayed at three doses 50, 100, and 200 m3 ha−1 year−1) over three successive years in olive fields. The effects of the effluent on the physico-chemical and microbial properties of soil-layers were assessed. The findings revealed that the pH of the soil decreased but electrical conductivity and organic matter, total nitrogen, sodium, and potassium soil contents increased in proportion with OMW concentration and frequency of application. While no variations were observed in phosphorus content, slow increases were recorded in calcium and magnesium soil contents. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with OMW spreading rates. The models expressing the correlation between progress parameters and OMW doses were fitted into a second degree polynomial model. Principal component analysis showed a strong correlation between soil mineral elements and microorganisms. These parameters were not related to phosphorus and pH.  相似文献   

5.
The effect of discharging olive mill wastewater (OMW) in soils on the release of metals previously retained by them is simulated by leaching homogeneous soil columns with a solution of the residue after passing solutions of Cu or Zn through the columns. The effect of other residues, previously added to the soil as composts in field experiments, on the behaviour observed in the laboratory is also discussed. OMW shows a strong power for releasing the metals retained. Previous addition of a compost made from olive mill sludge and plant refuse to the soil causes a significant reduction of the release of retained metal by liquid OMW. Previous addition of concentrated sugarbeet vinasse causes much less significant effects.  相似文献   

6.
Olive-mill wastewater (OMW), an effluent of olive oil extraction process, is annually produced in huge amounts in olive growing areas. An interesting option for its disposal is the spreading on agricultural land, provided that phytotoxic effects are neutralized. The objective of the present investigation was to evaluate the potential of an enzyme-based treatment in removing OMW phytotoxicity. To this aim, germinability experiments on durum wheat (Triticum durum Desf. cv. Duilio) were conducted in the presence of different dilutions of raw or enzyme-treated OMW. OMW treatment with laccase resulted in a 65% and 86% reduction in total phenols and ortho-diphenols respectively, due their polymerization as revealed by size-exclusion chromatography. Raw OMW exerted a significant concentration-dependent inhibition on the germinability of durum wheat seeds which was evident up to a dilution rate of 1:8. When the effluent was treated with a fungal laccase, germinability was increased by 57% at a 1:8 dilution and by 94% at a 1:2 dilution, as compared to the same dilutions using untreated OMW. The treatment with laccase also decreased the mean germination time by about 1 day as compared to untreated controls. These results show that germinability inhibition due to OMW can be reduced effectively using fungal laccase, suggesting that phenols are the main determinants of its phytotoxicity.  相似文献   

7.
The mill waste water holds a large amount of polyphenols, preventing the biodegradation processes because of their inhibitory action on microbial growth. Thus, its disposal represents an environmental problem for the great olive oil producing countries in the Mediterranean area. In this work, we present the preliminary results from the application of a photo-oxidative process on mill waste water to evaluate the organic matter degradation potential and the biodegradability of the treated residue. The total organic carbon is reduced up to 35% after 6 hours but the cost-effectiveness is unfavourable. In contrast, the aim of toxicity reduction is less expensive and shows good applicable chances; after 2 h, the polyphenols concentration drops by 60%.  相似文献   

8.
The Guadiamar river basin has traditionally received pollutants from two main sources: in its northern section of mining origin, and in its southern section (next to Do?ana National Park) from urban-industrial and agricultural sources. In April 1998, the spill of 6 million m3 of mining wastes (acidic waters and sludge) severely polluted the Guadiamar river basin with heavy metals, which caused serious damage to the local ecosystem. There is a direct association between the physicochemical speciation of an element and its toxicity, biological activity, bioavailability, solubility, etc. This work describes a distribution study of the metals Zn, Cd, Pb and Cu by speciation analysis of surface waters in eleven sampling points of the Guadiamar river basin. Four metal fractions were determined using anodic stripping voltammetry: labile metal forms, H+ exchangeable metal forms, strongly inert forms (associated with organic and inorganic matter in solution), and forms associated with suspended matter. Total concentrations in surface waters followed the trend Zn > Cu > Pb > Cd. The speciation study showed that Zn and Cd were present to a large extent in available forms (labile and H+ exchangeable), while Pb and Cu were found mostly in the less available forms (strongly inert). Moreover, the available forms were found in the northern section (mining pollution) and the strongly inert forms in the southern section (urban, industrial and agricultural pollution). These results can illustrate the potential value of speciation to discern between different sources of pollution.  相似文献   

9.
The goal of this research was to assess the potential of several industrial wastes to immobilise metals in two polluted soils deriving from an old Pb/Zn mine. Two different approaches were used to assess the performance of different amendments: a chemical one, using extraction by ethylenediaminetetraacetic acid (EDTA), and a biological one, using Lupinus albus as a bio-indicator. Four amendments were used: inorganic sugar production waste (named ‘sugar foam’, SF), sludge from a drinking water treatment sludge (DWS), organic waste from olive mill waste (OMW) and paper mill sludge (PMS). Amendment to soil ratios ranged from 0.1 to 0.3 (w/w). All the amendments were capable of significantly decreasing (p?<?0.05) EDTA-extractable Pb, Zn and Cu concentrations in the two soils used, with decreases in ranges 21–100, 25–100 and 2–100 % for Pb, Zn and Cu, respectively. The amendments tested were also effective in reducing the bioavailability of Pb and Zn for L. albus, which gave rise to a decrease in shoot metal accumulation by the lupine plants compared to that found in the control soil. That decrease reached up to 5.6 and 2.8 times for Pb and Zn, respectively, being statistically significant in most cases. Moreover, application of the OMW, DWS and SF amendments led to higher average values of plant biomass (up to 71 %) than those obtained in the control soil. The results obtained showed the technology put forward to be a viable means of remediating mine soils as it led to a decrease in the availability and toxicity of metals and, thus, facilitated the growth of a vegetation layer.  相似文献   

10.
Land disposal of olive oil wastewater using it as a soil amendment requires a knowledge of the effects that its application may produce on the status of the mineral nutrients in the plant-soil system. A pot experiment using calcareous soil was performed in a growth chamber to examine the effects of olive oil wastewater on the availability and postharvest soil extractability of K, Mg and Mn. The experiment included 6 treatments: two rates of olive oil wastewater, two mineral fertilizer treatments containing K (which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments), a K-free mineral fertilizer treatment, and a control. The pots were sown with ryegrass as the test plant, harvesting 3 times at intervals of one month. Olive oil wastewater has demonstrated a considerable capacity for supplying K that can be assimilated by the plant, tending in fact to surpass the mineral potassium fertilizer tested. The application of olive oil wastewater tends to reduce the concentration of Mg in the plant, similarly to the effect of adding mineral potassium fertilizer. An enhancement of Mn availability takes place in the soil amended with olive oil wastewater, which on occasion has produced Mn concentrations in plant that could be considered phytotoxic or at least excessive. After harvesting, we observed an increase in the amount of exchangeable K in soil with added industrial wastewater. However, these increases are lower than those in soil treated with mineral potassium fertilizer. The levels of exchangeable, carbonate-bound, organic-bound and residual Mg in soil were higher in treatments incorporating olive oil wastewater than in those with added mineral K, with the opposite tendency occurring in the amount of Fe-Mn oxides-bound Mg in soil. Treatments based on olive oil wastewater, especially in high doses, increased the amount of exchangeable and carbonate-bound Mn in soil, in comparison with treatments adding mineral fertilizers with or without K. In contrast, the addition of industrial wastewater caused a drop in the amount of Fe-Mn oxides-bound and organic-bound Mn in soil.  相似文献   

11.
Abstract

Land disposal of olive oil wastewater using it as a soil amendment requires a knowledge of the effects that its application may produce on the status of the mineral nutrients in the plant‐soil system. A pot experiment using calcareous soil was performed in a growth chamber to examine the effects of olive oil wastewater on the availability and postharvest soil extractability of K, Mg and Mn. The experiment included 6 treatments: two rates of olive oil wastewater, two mineral fertilizer treatments containing K (which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments), a K‐free mineral fertilizer treatment, and a control. The pots were sown with ryegrass as the test plant, harvesting 3 times at intervals of one month. Olive oil wastewater has demonstrated a considerable capacity for supplying K that can be assimilated by the plant, tending in fact to surpass the mineral potassium fertilizer tested. The application of olive oil wastewater tends to reduce the concentration of Mg in the plant, similarly to the effect of adding mineral potassium fertilizer. An enhancement of Mn availability takes place in the soil amended with olive oil wastewater, which on occasion has produced Mn concentrations in plant that could be considered phytotoxic or at least excessive. After harvesting, we observed an increase in the amount of exchangeable K in soil with added industrial wastewater. However, these increases are lower than those in soil treated with mineral potassium fertilizer. The levels of exchangeable, carbonate‐bound, organic‐bound and residual Mg in soil were higher in treatments incorporating olive oil wastewater than in those with added mineral K, with the opposite tendency occurring in the amount of Fe‐Mn oxides‐bound Mg in soil. Treatments based on olive oil wastewater, especially in high doses, increased the amount of exchangeable and carbonate‐bound Mn in soil, in comparison with treatments adding mineral fertilizers with or without K. In contrast, the addition of industrial wastewater caused a drop in the amount of Fe‐Mn oxides‐bound and organic‐bound Mn in soil.  相似文献   

12.
The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5 % of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78 % between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.  相似文献   

13.
Olive mill wastewater (OMW) brings about a major environmental problem in Tunisia as well as in the other Mediterranean countries. Its strong organic load and its toxicity due to the presence of complex phenolic compounds have dire effects when applied to soil. To overcome this difficulty, the OMW pretreatment was investigated in the present work using the Fenton oxidation reaction with zero-valent iron. Then, this pretreated wastewater was valorized in fertigation practice. The effects of the addition of different concentrations of both treated and raw OMW on soil and cropping system were investigated. The treatment by Fenton oxidation with zero-valent iron could reduce 50 % of COD and decrease 53 % of phenolic compounds. OMW application had a temporary effect on the soil pH and EC. The results showed that the evolution of soil pH and EC was related to the organic matter of the soil which depends on the spread concentrations of raw or treated OMW. After 15-day incubation period, the soil pH and EC tended to stabilize and return to the control level. Moreover, this stabilization is faster in treated OMW than that in raw OMW especially for concentrations as high as 3 and 4 %. Plants cultivated with treated OMW showed an increase in their germination. The results pointed an improvement in the stem length of plants which is almost similar to that of the control for both pea and tomato, especially for high concentrations of 3 and 4 %.  相似文献   

14.
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.  相似文献   

15.
The purpose of this work was to investigate the effects of spreading olive oil mill wastewater (OMWW) on soil biochemical parameters and olive production in an organically managed olive orchard. The experiment was carried out with three different doses of OMWW (80, 160 and 500 m3 ha?1) and a control (untreated soil). Three samplings were done at 10, 30 and 90 days after the administration of the byproduct. OMWW application differentially modified the biochemical properties of the soil analyzed. Organic matter, organic carbon, total nitrogen and extractable phosphorus soil contents increased proportionally with each increasing dose. The values of these parameters decreased gradually with time. Total microbial activity was altered and the OMWW 500 m3 ha?1 treatment proved to be the most active when compared with the other applied doses. OMWW agricultural application also modified the structure of soil microbial communities, particularly affecting Gram positive and negative bacteria, while fungal biomass did not show consistent changes. Although there was a salinity increase in the treated soil, especially at the highest dose, the productive parameters analyzed (fruit and oil tree?1) were not affected. In light of the obtained results, we consider that low dose of OMWW could be considered an alternative farming practice for semiarid regions.  相似文献   

16.
Atmospheric concentrations and deposition of the major nitrogenous (N) compounds and their biological effects in California forests are reviewed. Climatic characteristics of California are summarized in light of their effects on pollutant accumulation and transport. Over large areas of the state dry deposition is of greater magnitude than wet deposition due to the arid climate. However, fog deposition can also be significant in areas where seasonal fogs and N pollution sources coincide. The dominance of dry deposition is magnified in airsheds with frequent temperature inversions such as occur in the Los Angeles Air Basin. Most of the deposition in such areas occurs in summer as a result of surface deposition of nitric acid vapor (HNO3) as well as particulate nitrate (NO3-) and ammonium (NH4+). Internal uptake of gaseous N pollutants such as nitrogen dioxide (NO2), nitric oxide (NO), HNO3, peroxyacetyl nitrate (PAN), ammonia (NH3), and others provides additional N to forests. However, summer drought and subsequent lower stomatal conductance of plants tend to limit plant utilization of gaseous N. Nitrogen deposition is much greater than S deposition in California. In locations close to photochemical smog source areas, concentrations of oxidized forms of N (NO2, HNO3, PAN) dominate, while in areas near agricultural activities the importance of reduced N forms (NH3, NH4+) significantly increases. Little data from California forests are available for most of the gaseous N pollutants. Total inorganic N deposition in the most highly-exposed forests in the Los Angeles Air Basin may be as high as 25-45 kg ha(-1) year(-1). Nitrogen deposition in these highly-exposed areas has led to N saturation of chaparral and mixed conifer stands. In N saturated forests high concentrations of NO3- are found in streamwater, soil solution, and in foliage. Nitric oxide emissions from soil and foliar N:P ratios are also high in N saturated sites. Further research is needed to determine the ecological effects of chronic N deposition, and to develop appropriate management options for protecting water quality and managing plant nutrient resources in ecosystems which no longer retain excess N.  相似文献   

17.
Short-term increases in soil solution nitrate (NO3) concentration are often observed after forest harvest, even in N-limited systems. We model NO3 leaching below the rooting zone as a function of site productivity. Using national forest inventories and published estimates of N attenuation in rivers and the riparian zone, we estimate effects of stem-only harvesting on NO3 leaching to groundwater, surface waters and the marine environment. Stem-only harvesting is a minor contributor to NO3 pollution of Swedish waters. Effects in surface waters are rapidly diluted downstream, but can be locally important for shallow well-waters as well as for the total amount of N reaching the sea. Harvesting adds approximately 8 Gg NO3-N to soil waters in Sweden, with local concentrations up to 7 mg NO3-N l−1. Of that, ∼3.3 Gg reaches the marine environment. This is ∼3% of the overall Swedish N load to the Baltic.  相似文献   

18.
The disposal of coal combustion residues (CCR) has led to a significant consumption of land in the West Balkan region. In Tuzla (Bosnia and Herzegovina) we studied previously soil-covered (farmed) and barren CCR landfills including management practises, field ageing of CCR and the transfer of trace elements into crops, wild plants and wastewaters. Soil tillage resulted in mixing of cover soil with CCR. Medicago sativa showed very low Cu:Mo ratios (1.25) which may cause hypocuprosis in ruminants. Total loads of inorganic pollutants in the CCR transport water, but not pH ( approximately 12), were below regulatory limits of most EU countries. Arsenic concentrations in CCR transport water were <2microgl(-1) whereas reductive conditions in an abandoned landfill significantly enhanced concentrations in leachates (44microgl(-1)). The opposite pattern was found for Cr likely due to large initial leaching of CrVI. Public use of landfills, including farming, should be based on a prior risk assessment due to the heterogeneity of CCR.  相似文献   

19.
Background Olive mill wastewater (OMW) generated by the olive oil extracting industry is a major pollutant, because of its high organic load and phytotoxic and antibacterial phenolic compounds which resist biological degradation. Mediterranean countries are mostly affected by this serious environmental problem since they are responsible for 95% of the worldwide oliveoil production. There are many methods used for OMW treatment, such as adsorption, electro coagulation, electro-oxidation, biological degradation, advanced oxidation processes (AOPs), chemical coagulation, flocculation, filtration, lagoons of evaporation and burning systems, etc. Currently, there is no such economical and easy solution. The aim of this study was to evaluate the feasibility of decolourization and removal of phenol, lignin, TOC and TIC in OMW by UV/H2O2 (AOPs). The operating parameters, such as hydrogen peroxide dosage, times, pH, effect of UV and natural sunlight were determined to find the suitable operating conditions for the best removal. Moreover, there is no study reported in the literature related to the use of UV/H2O2 and lime together in OMW treatment. Methods OMW was obtained from an olive-oil producing plant (Muğla area of Turkey) which uses a modern production process. No chemical additives are used during olive oil production. This study was realised by using two different UV sources, while taking the time and energy consumption into consideration. These two sources were mercury lamps and natural sunlight. Before starting AOPs experiments, one litre of OMW was treated by adding lime until a pH of 7.00. Then, 100 ml was taken from each sample, and 1 to 10 ml of a 30% H2O2 (Riedel-deHaen) solution was added. These solutions in closed vessels were laid in the natural sunlight for a week and their compositions and colour changes were analysed daily by UV-Vis spectrophotometer. At the end of the one-week period, they were treated with lime. In this study, the effect of changes in the initial pH, times and H2O2 concentrations on removal was investigated. At the end of all experiments, changes in colour, phenol, lignin, TOC and TIC concentrations were analysed according to standard methods. Results and Discussion In the samples exposed to natural sunlight and having an H2O2/OMW ratio of 3 ml/100 ml, a significant colour removal was achieved approximately 90% of the time at the end of 7 days. When the same samples were treated with lime (pH: up to 7), 99% efficiency was achieved. When phenol and lignin removals were examined in the same concentration, phenol and lignin removal were found 99.5%, 35%, respectively. However, for maximum lignin removal, more use of H2O2 (10 ml H2O2/100 ml OMW) was found to be necessary. Under these conditions, it was found that lignin can be removed by 70%, but to 90% with lime, at the end of a seven-day period. Rate constants obtained in the experiments performed with direct UV were found to be much higher than those of the samples exposed to natural sunlight (ka lignin = 0.3883 ≫ kb lignin = 0.0078; ka phenol = 0.5187 ≫ kb phenol = 0.0146). Moreover, it should be remembered in this process that energy consumption may induce extra financial burden for organisations. Conclusions It was found, in general, that colour, lignin, total organic carbon and phenol were removed more efficiently from OMW by using H2O2 UV and lime OMW. Moreover, in the study, lime was found to contribute, both initially and after radical reactions, to the efficiency to a great extent. Recommendations and Perspectives Another result obtained from the study is that pre-purification carried out with hydrogen peroxide and lime may constitute an important step for further purification processes such as adsorption, membrane processes, etc.  相似文献   

20.
Olive-mill wastewater (OMW) constitutes a major agricultural waste stream for which disposal is associated with significant environmental repercussions. No data are available on the effects of biotreated OMW and of the protective role of exogenously provided proline on plant physiology. In the present study, OMW was administered, either raw or previously treated by the white-rot fungus Pleurotus ostreatus, with or without proline amendment, to lettuce plants growing in sterilized sand. Biotreated OMW and proline addition resulted in significant moderation of OMW adverse effects on plant biomass production and ascorbic acid content, while their synergistic action alleviated the severe negative impact on net photosynthetic rate, water use efficiency and photosynthetic activity (Fv/Fo) invoked by the effluent. Moreover, biotreated OMW supplemented with proline, moderated the decrease in chlorophylls exerted by raw OMW, but it did not contribute at restoring carotenoids content. Restoration of plant transpiration was complete when biotreated OMW was used (with or without proline); proline alone mitigated the negative impact of OMW on photosynthetic efficiency (Fv/Fm and Fv'/Fm'). It seems that key photosynthetic parameters could be exploited as suitable evaluators of wastewater-induced plant toxicity, while plant fertigation with biotreated and/or supplemented OMW could be an interesting prospect in valorizing this effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号