首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
Energy consumption is fundamentally necessary for human well-being. However, although increasing energy consumption provides substantial improvements in well-being for low and intermediate levels of development, incremental increases in consumption fail to provide improvements for “super-developed” countries that exhibit the highest levels of development and energy consumption. The aim of this note is, therefore, to quantitatively explore the global emissions debt and climate change commitment associated with the gap in energy consumption between the energy-saturated super-developed countries and the rest of the world. Adopting Kates’ identity, I calculate that elevating the current populations in the non-super-developed countries to the energy and carbon intensities of the United States is akin to adding the fossil-fuel CO2 emissions of more than 15 United States to the global annual total, implying cumulative emissions of almost 4000 GT CO2 from 2010 through 2050. The inevitability of continued emissions beyond 2050 suggests that the transition of non-super-developed countries to a US-like profile between now and 2050 could, by itself, plausibly result in global warming of 3.2 °C above the late-twentieth century baseline, including an extremely high likelihood that global warming would exceed 1.2 °C. Global warming of this magnitude is likely to cause regional climate change that falls well outside of the baseline variations to which much of the world is presently accustomed, meaning that a US-like energy-development pathway carries substantial climate change commitment for both non-super-developed and super-developed countries, independent of future emissions from the super-developed world. However, the assumption that all countries converge on the minimum energy intensity of the super-developed world and a carbon-free energy system between now and 2050 implies cumulative CO2 emissions of less than 1000 GT CO2 between 2010 and 2050, along with a less than 40 % probability of exceeding 1.2 °C of additional global warming. It is, therefore, possible that intensive efforts to develop and deploy global-scale capacity for low-carbon energy consumption could simultaneously ensure human well-being and substantially limit the associated climate change commitment.  相似文献   

2.
Buildings contribute almost half of the world's carbon dioxide (CO2) emissions. Energy and water consumption are some of the largest and fastest growing pressures on the global environment. The use of energy is mainly attributed to the heating and cooling of buildings. The type of materials used in the construction of buildings plays a significant role in the life-cycle emissions of each dwelling. Changing the material use in the construction of an existing building and adding insulation could have a major impact on energy use and the environment of the building in its entire life cycle. This paper investigates the amount of exergy savings and the decrease in CO2 emissions resulting from the refurbishing of an existing building in Ljubljana. This study results from the growing awareness that in the choice of building materials, the designer must consider not only the requirements of the owner and occupier of the building, but also the resulting energy savings, the resource base and the effects of the manufacturing and processing of building materials on the environment. The exergy efficiency of the material use is calculated and the environmental impact assessment of energy and material use is accounted for.  相似文献   

3.
The building sector has been regarded as a potential sector where there is large capacity to reduce the climate change effect. This study has proposed solutions to mitigate environmental impacts and achieve low CO2 emission from residential sector. Therefore, full life cycle assessment (LCA) has been run to assess the CO2 emission and its effect on the atmosphere and climate change. Based on the result, timber scheme is the best choice due to releasing less CO2 emissions to the atmosphere. However, house builders in Malaysia have almost completely neglected timber as a building material, with timber use as building components reduced to 5%. In this study, LCA Software was used to assess CO2 emissions from different wall construction. The alternative building scheme has been made by reinforce steel stud, wooden beam and timber wall (S8) to improve the scheme deficiency while releasing less CO2 emissions compared to other schemes. Therefore, S8 has a decreased CO2 effect by 85% less than precast concrete frame and 90% less than brick over their lifetime. (S8) increased the load bearing compared to conventional timber beam. Thus, new scheme S8 could be replaced by current scheme and promote more adjustable scheme for Malaysian housing.  相似文献   

4.
The carbon emissions in service sectors have attracted increasing attention around the world. However, few studies have examined the driving forces for CO2 emissions from service sectors in developing countries. With the process of accelerating industrialization, China’s service sectors are facing growing pressure to pursue energy savings and emission reductions, especially in several developed regions. In this paper, in order to better understand how CO2 emissions in Beijing’s service sectors have evolved, we utilized a subsystem input–output decomposition analysis to study the pattern and driving factors of consumption-based emissions in Beijing’s service sectors. The results showed that the transportation sector and the Scientific Studies Technical Services sector caused the most CO2 emissions in Beijing’s service sectors. The emission intensity effect potentially reduced CO2 emissions by 10,833 Mt, primarily due to the decreased energy intensity of non-service sectors. Effects of demand and technology were mainly responsible for the increased CO2 emissions in Beijing’s service sectors. Such influence was mainly related to the external component of service sectors, indicating a strong pull effect exerted by service sectors on non-service sectors. Thus, decarbonizing the supply chain of service sectors and improving the energy intensity are necessary to alleviate CO2 emissions in Beijing.  相似文献   

5.
This study analyzed the impact of urbanization and the level of economic development on CO2 emissions using the STIRPAT model and provincial panel data for China. This study classified the 29 provinces of China into three groups (eastern, central, and western regions) and examined regional differences in the environmental impacts of urbanization and economic development levels. The results demonstrated that there was an inverted U-shaped relationship between urbanization and CO2 emissions in the central and western regions of China. However, we did not confirm the environmental Kuznets curve relationship between urbanization and CO2 emissions in eastern China, where CO2 emissions increase monotonically with urbanization. This study showed that the impacts of urbanization differ considerably. There was a U-shaped relationship between economic growth and CO2 emissions. However, the point of inflexion was very low, which indicates that economic growth will promote CO2 emissions in China. The share of the industry output value had a marginal incremental effect on CO2 emissions. There was a decreasing effect of population scale on CO2 emissions. Energy efficiency is the main factor that restrains CO2 emissions, and the effect was higher in regions with low energy efficiency.  相似文献   

6.
ABSTRACT

Continuously reducing the CO2 intensity of GDP is the core strategy for developing countries to realize the dual targets of economic growth and CO2 emissions reduction. The measures are twofold: one is to strengthen energy saving and decrease energy intensity of GDP and the other is to promote energy structural decarbonization and reduce CO2 intensity of energy consumption. In order to control global temperature rise no more than 2°C, the decrease in CO2 intensity of GDP needs surpass 4% before 2030, but it could be merely about 2% based on the current trend. Therefore, all countries ought to speed up the low-carbon transition in energy and economy. As for China, keeping a continuous decline in CO2 intensity of GDP of 4%–5% will ensure the realization of the NDC objectives, and also promotes the early peaking of CO2 emissions before 2030. China will play a positive leading role in realizing a win-win low-carbon development coordinating sustainable development and climate change mitigation.  相似文献   

7.
Cross-cutting government policies that are designed to mitigate CO2 emissions have caused an increased interdependence between government agencies. This leads to fragmentation in the public administration of climate change mitigation. The need for more coordination among government agencies involved in drafting and implementing energy and transportation policies is necessary to create collaborative strategies that can affect energy demand and reduce CO2 emissions. The study aims to use Thailand as a case study to examine and discuss how effective coordination and integration of energy and transport policies and actions in the domain of GHG mitigation in Thailand can be successful. The authors applied a mixed-method information gathering approach combined with data from panel discussions. A thorough literature review guided the evidence, which was reinforced by the expert opinions of 35 industry professionals and governmental officers. Importance-performance analysis was applied as a policy assessment method. The study proposes applying a combination of several factors and conditions regarding institutional aspects of transport and energy sectors into a new greater strategies and actions toward CO2 mitigation. In findings, a combination of instruments and autonomy of sectors is the greatest important and successful opportunity to enable effective coordination and integration of policies for CO2 mitigation. Insightful discussions on integrated approach and recommendations would contribute to collaboratively administrative mechanism.  相似文献   

8.
This study evaluates and compares the trends in CO2 emissions for the manufacturing industries of three countries: two developed countries (Germany and Sweden) that have applied several measures to promote a shift towards a low-carbon economy and one developing country (Colombia) that has shown substantial improvements in the reduction of CO2 emissions. This analysis is conducted using panel data cointegration techniques to infer causality between CO2 emissions, production factors and energy sources. The results indicate a trend of producing more output with less pollution. The trends for these countries’ CO2 emissions depend on investment levels, energy sources and economic factors. Furthermore, the trends in CO2 emissions indicate that there are emission level differences between the two developed countries and the developing country. Moreover, the study confirms that it is possible to achieve economic growth and sustainable development while reducing greenhouse gas emissions, as Germany and Sweden demonstrate. In the case of Colombia, it is important to encourage a reduction in CO2 emissions through policies that combine technical and economic instruments and incentivise the application of new technologies that promote clean and environmentally friendly processes.  相似文献   

9.
A chemical pathway combining reverse water gas shift, Fischer‐Tropsch synthesis and hydro‐cracking was considered to re‐synthesise jet fuel from CO2 captured at high purity by oxy‐fuelling of a typical coal‐fired power station (Drax, UK). The oxygen for oxy‐fuelling and hydrogen for the fuel re‐synthesis process are sourced by electrolysis of water. According to material and energy balances , 3.1 MT/year of jet fuel and 1.6 MT/year each of gas oil and naphtha can be produced from the Drax annual emissions of 20 MT of CO2, sufficient to supply 23% of the UK jet fuel requirements. The overall re‐synthesis requires 16.9 GW, to be sourced renewably from (offshore) wind power, and releases 4.4 GW of exothermic energy giving scope for improvements via process integration. The energy re‐synthesis penalty was 82% ideally and 95% on a practical basis. With the cost of offshore wind power predicted to reduce to 2.0 p/kWh by 2020, this ‘re‐syn’ jet fuel would be competitive with conventional jet fuel, especially if carbon taxes apply. The re‐use of CO2 sequestrated from coal power stations to form jet‐fuel would halve the combined CO2 emissions from the coal power and aviation sectors.  相似文献   

10.
Economic Analysis of CO2 Emission Trends in China   总被引:1,自引:0,他引:1  
Climate change is one of hot spots all around the world. China, the second biggest CO2 emitter, is facing increasingly severe pressure to reduce CO2 emission. The article first describes Kaya Identity and its policy implications. Second, it uses the modified Kaya Identity and makes decomposition without residues on CO2 emission during the period 1971-2005. Taking into account the changes of macroeconomic background, it conducts a detailed analysis in terms of CO2 emission trend from 4th Five Year Plan through 10th Five Year Plan. The decomposition results indicate that economic development and increase in population are major driving forces, and that improvement in energy efficiency contributes to the reduction of CO2 emission, and that decarbonization in primary energy structure is also an important strategic choice. Finally, the article stresses that in CO2 order to realize the binding target of 20% reduction in GDP energy intensity during the 11th Five Year Plan, China should speed up the readjustment of the industrial structure and energetically develop the energy-efficient technologies and clean fuel technology, which will effectively promote the country to reduce CO2 emission and contribute to the mitigation of climate change.  相似文献   

11.
The past decade has seen the rapid development of the tourist industry in Southeast Asia. There is increasing concern that tourism is highly affecting CO2 emissions, but the nature of the relationship is still unclear. The main target of this paper is to investigate the existence of a linear and/or nonlinear relationship between tourism and CO2 emissions in the five most important countries located in Southeast Asia, using the panel cointegration and pooled mean group techniques. The results indicate that tourism and CO2 emissions are cointegrated, implying that tourism affects CO2 emissions in the long run. Our findings support the nonlinear relationship between tourism and emissions as well as economic activities and CO2 emissions. Accordingly, an inverted U-shaped relationship exists between tourism and emissions confirming the existence of an Environmental Kuznets Curve in the Southeast Asian tourism industry. Furthermore, the empirical results show that economic activities and energy consumption greatly increase emissions.  相似文献   

12.
Carbon dioxide emissions due to fossil fuel consumption are well recognized as a major contributor to climate change. In the debate on dealing with this threat, expectations are high that agriculture based economies of the developing world can help alleviate this problem. But, the contribution of agricultural operations to these emissions is fairly small. It is the clearing of native ecosystems for agricultural use in the tropics that is the largest non-fossil fuel source of CO2 input to the atmosphere. Our calculation show that the use of fossil energy and the concomitant emission of CO2 in the agricultural operational sector - i.e. the use of farm machinery, irrigation, fertilization and chemical pesticides - amounts to merely 3.9% of the commercial energy use in that part of the world. Of this, 70% is associated with the production and use of chemical fertilizers. In the absence of fertilizer use, the developing world would have converted even more land for cultivation, most of which is completely unsuitable for cultivation. Current expectations are that reforestation in these countries can sequester large quantities of carbon in order to mitigate excessive emissions elsewhere. But, any program that aims to set aside land for the purpose of sequestering carbon must do so without threatening food security in the region. The sole option to liberate the necessary land for carbon sequestration would be the intensification of agricultural production on some of the better lands by increased fertilizer inputs. As our calculations show, the sequestration of carbon far outweighs the emissions that are associated with the production of the extra fertilizer needed. Increasing the fertilizer use in the developing world (without China) by 20%, we calculated an overall net benefit in the carbon budget of between 80 and 206 Mt yr?1 dependent on the carbon sequestration rate assumed for the regrowing forest. In those regions, where current fertilizer use is low, the relative benefits are the highest as responding yield increases are highest and thus more land can be set aside without harming food security. In Sub-Saharan Africa a 20% fertilizer increase, which amounts to 0.14 Mt of extra fertilizer, can tie up somewhere between 8 and 19 Mt of CO2 per year (average: 96 t CO2 per 1 t fertilizer). In the Near East and North Africa with a 20%-increased fertilizer use of 0.4 Mt yr-1 between 10 and 24 Mt of CO2 could be sequestered on the land set aside (40 t CO2 per 1 t fertilizer). In South Asia this is 22–61 Mt CO2 yr?1 with an annual additional input of 2.15 Mt fertilizer (19 t CO2 per 1 t fertilizer). In fact, carbon credits may be the only way for some of the farmers in these regions to afford the costly inputs. Additionally, in regions with already relatively high fertilizer inputs such as in South Asia, an efficient use of the extra fertilizer must be warranted. Nevertheless, the net CO2 benefit through implementation of this measure in the developing world is insignificant compared to the worldwide CO2 output by human activity. Thus, reforestation is only one mitigating measure and not the solution to unconstrained fossil fuel CO2 emissions. Carbon emissions should, therefore, first of all be reduced by the avoidance of deforestation in the developing world and moreover by higher energy efficiency and the use of alternative energy sources.  相似文献   

13.
The present study investigates the energy, environment and growth nexus for a panel of South Asian countries including Bangladesh, India, Pakistan, Sri Lanka and Nepal. The simultaneous analysis of real GDP, energy consumption and CO2 emissions is conducted for the period 1980–2010. Levin panel unit root test and Im test panel unit root both indicate that all the variables are I (1). In addition, Kao’s panel Cointegration test specifies a stable long-term relationship between all these variables. Empirical findings show that a 1 % increase in energy consumption increases output by 0.81 % in long run whereas for the same increase in CO2 emission output falls by 0.17 % in long run. Panel Granger causality tests report short-run causality running from energy consumption to CO2 emissions and from CO2 emissions to GDP.  相似文献   

14.
This article analyzes the causality between the economic growth, the energy and the environment, measured by CO2 emissions. Our empirical study is based on a series of annual data from 1980 to 2010 in Tunisia. Our study was conducted using the Granger causality test and variance decomposition. The empirical results confirm the presence of a positive effect between the energy consumption and the economic growth measured by gross domestic product (GDP). Thus, there is a unidirectional relationship between GDP and CO2 emissions in the short term. This analysis shows, as is common to relatively fast-growing economies in Tunisia, that the biggest contributor to the rise is CO2 emissions. Hence, in congruence with the result of variance decomposition, the GDP affects CO2 emissions in the short and medium term at an almost constant level (10 %). The non-renewable energy intensity in Tunisian economy is responsible for a modest reduction in CO2 emissions, which suggests the implementation of conservation policies aimed at energy efficiency and the orientation toward renewable energy.  相似文献   

15.
Greenhouse gases (GHG) emissions from agricultural farming practice contribute significantly to European GHG inventories. For example, CO2 is emitted when grassland is converted to cropland or when peatlands are drained and cultivated. N2O emissions result from fertilization. Enabling farmers to reduce their GHG emissions requires sufficient information about its pressure–impact relations as well as incentives, such as regulations and funding, that support climate-friendly agricultural management. This paper discusses potentials to improve the supply of information on: farm-specific climate services or impacts, present policy incentives in Germany and England that support climate-friendly farm management and related adaptation requirements. Tools which have been developed for a farm environmental management software (to be added after review because of potential identification) are presented. These tools assess CO2 emissions from grassland conversion to cropland and peatland cultivation, as well as N2O emissions from nitrogen fertilization. As input data, the CO2 tool requires a classification of soil types according to soil organic carbon storage. The input data based on soil profile samples was compared with reference data from the literature. The N2O tool relies on farm data concerning fertilization. These tools were tested on three farms in order to determine their viability with respect to the availability of required data and the differentiation of results, which determines how well site-specific conservation measures can be identified. Assessing CO2 retention function of grassland conservation to cropland on the test farms leads to spatially differentiated results (~100 to ~900 potentially mitigated t CO2 ha?1). Assessed N2O emissions varied from 0.41 to 1.1 t CO2eq. ha?1 a?1. The proposed methods support policies that promote a more differentiated funding of climate conservation measures. Conservation measures and areas can be selected so that they will have the greatest mitigation effects. However, even though present policy instruments in Germany and England, such as Cross Compliance and agri-environmental measures, have the potential to reduce agricultural GHG, they do not appear to guide measures effectively or site-specifically. In order to close this gap, agri-environmental measures with the potential to support climate protection should be spatially optimized. Additionally, the wetland restoration measures which are most effective in reducing GHG emissions should be included in funding schemes.  相似文献   

16.

The income inequality-economy link has been argued by researchers a long time. But the impact of income inequality on environmental pollution is a new investigation topic for developing countries. Turkey is well known as an emerging economy which has a high level of income inequality and CO2 emissions. Therefore, this paper concentrates on the income inequality-CO2 emissions link in Turkish economy by applying a nonlinear analysis. This paper integrates economic growth and financial development to the CO2 emissions specification over the period of 1987–2019. We employ the nonlinear autoregressive distributed lag approach to explore the long-run nonlinear linkages between the series. Our findings reveal an asymmetric cointegration among variables. Positive and negative income inequality shocks positively affect CO2 emissions implying that positive and negative shocks of income inequality enhance CO2 emissions in the long run. Negative economic growth shocks decrease CO2 emissions, while positive shocks to financial development increase CO2 emissions in the long run. We provide important policy suggestions that might be useful to the policymakers to decrease CO2 emissions in Turkey.

  相似文献   

17.
Establishing positive and urgent targets for CO2 reduction and emission peak, and promoting energy conservation and energy structure adjustment are among the strategies to address global climate change and CO2 emissions reduction. They are also means to break through the constraints of domestic resources and environment, and internal needs, to achieve sustainable development. Generally speaking, a country's CO2 emission peak appears after achieving urbanization and industrialization. By then, connotative economic growth will appear, GDP will grow slowly, energy consumption elasticity will decrease, and energy consumption growth will slow down – dependent mainly on new and renewable energies. Fossil fuel consumption will not increase further. When CO2 emission reaches its peak, the annual reduction rate of CO2 intensity of GDP is greater than GDP annual growth rate; and the annual reduction rate of CO2 intensity of energy use is greater than the annual growth rate of energy consumption. Therefore, three important approaches to promotion of CO2 emission peak can be concluded: maintaining reasonable control of GDP growth, strengthening energy conservation to significantly reduce the GDP energy intensity, and optimizing the energy mix to reduce the CO2 intensity of energy use. By around 2030, China will basically have completed its rapid development phase of industrialization and urbanization. Connotative economic growth will appear with the acceleration of industrial structure adjustment. The target of GDP energy intensity will still be to maintain an average annual reduction of 3% or higher. The proportion of non-fossil fuels will reach 20–25%, and the aim will be to maintain an average annual growth rate of 6–8%. The total annual energy demand growth of 1.5% will be satisfied by the newly increased supply of non-fossil fuels. The annual decline in CO2 intensity of GDP will reach 4.5% or higher, which is compatible with an average annual GDP growth rate of approximately 4.5% in order to reach CO2 emission peak. This corresponds to the level of China's potential economic growth. Achieving CO2 emission peak will not impose a rigid constraint on economic development, but rather promote economic development and accelerate the transformation of green, low-carbon development. The CO2 emission peak can be controlled with a cap of 11 billion tons, which means that CO2 emission will increase by less than 50% compared with 2010. The per capita emission peak will be controlled at a level of less than 8 tons, which is lower than the 9.5 tons in the EU and Japan and much lower than the 20 tons in the US, future economic and social development faces many uncertainties in achieving the CO2 emission peak discussed above. It depends on current and future strategies and policies, as well as the pace and strength of economic transformation, innovation, and new energy technologies. If the economic transformation pattern fails to meet expectations, the time required to reach CO2 emission peak would be delayed and the peak level would be higher than expected. Therefore, we need to coordinate thoughts and ideas and deploy these in advance; to highlight the strategic position of low-carbon development and its priorities; to enact mid- to long-term energy development strategies; and to establish and improve a system of laws, regulations, and policies as well as an implementation mechanism for green, low-carbon development. Oriented by positive and urgent CO2 reduction and peak targets, the government would form a reversed mechanism to promote economic transformation and embark on the path of green, low-carbon development as soon as possible.  相似文献   

18.
NEWS     
Abstract

Co-integration theory has been employed in this paper and Granger causes are found between urbanization rate and GDP, between capital stock and GDP. Scenario analysis of GDP is performed using the GDP model established in the paper. The energy consumptions in Germany, Japan and other developed countries are analyzed and compared with the energy consumption in China. Environmental friendly scenario of energy demand and CO2 emissions for sustainable China has been formed based on the results of comparison. Under environmental friendly scenario, the primary energy consumption will be 4.31 billion ton coal equivalence (tce) and CO2 emissions will be 1.854 billion t-c in 2050; energy per capital will be 3.06 tce that is 1.8 times of energy consumed in 2005 in China and 51% of consumed energy per capital in Japan in 2003. In 2050, the energy requirement of unit GDP will be 20% lower than that of Germany in 2003, but will be still 37% higher than that in Japan in 2003. It is certain that to fulfill the environmental friendly Scenario of energy demand and CO2 emissions is a difficult task and it needs long term efforts of the whole society, not only in production sectors but also in service and household sectors.  相似文献   

19.
Abstract

This paper proposes to use DEA models with undesirable outputs to construct the Malmquist index that can be use to investigate the dynamic changes of CO2 emission performance. With the index, the authors have measured the CO2 emission performance of 28 provinces and autonomous regions in China from 1996 to 2007; with the convergence theory and panel data regression model, the authors analyze the regional differences and the influencing factors. It is found that the performance of CO2 emissions in China has been continuously improved mainly due to the technological progress, and the average improvement rate is 3.25%, with a cumulative improvement rate of 40.86%. In addition, the CO2 emission performance varies across four regions. As a whole, the performance score of eastern China is the highest. The northeastern and central China has relatively lower performance scores, and the western China is relatively backward. The regional differences are decreasing, and the performance of CO2 emissions is convergent. The influence of some factors on the performance of CO2 emissions is significant, such as the level of economic development, the level of industrial structure, energy intensity, and ownership structure. The influence of some factors, such as opening-up to the outside world, on the performance of CO2 emissions is not significant.  相似文献   

20.
With the economic development, China has become the largest CO2 emissions country. China’s power industry CO2 emissions accounted for about 50% of total CO2 emissions. Therefore, exploring major drivers of CO2 emissions is critical to mitigating its CO2 emissions in power industry. Many studies considered the time series model to analyze the national influences factors of CO2 emissions. But this paper focuses on regional differences in CO2 emissions and adopts panel data models to explore the major impact factors of CO2 emissions in the power industry at the regional and provincial perspectives. The results indicate economic growth level plays a dominant role in reducing CO2 emissions. The power-consuming efficiency on the demand side has large potential to mitigate CO2 emissions, but its influences are different in three regions. The impacts of the electric power structure on CO2 emissions decline from the eastern region to the central and western regions. The influence of urbanization and industrialization also has significant regional differences. Therefore, the governments should consider the influencing factors and regional differences and formulate appropriate policies to decrease CO2 emissions in the power industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号