首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钯修饰碳纳米管电极电催化氧化三氯生   总被引:1,自引:0,他引:1  
郑红涛  胡翔  吴欣 《环境工程学报》2012,6(6):1790-1794
采用钯修饰多壁碳纳米管(MWCNTs)电极电催化氧化降解三氯生,考察了极板间距、电流密度、离子强度、pH、初始浓度和电解时间对三氯生去除效率的影响,并探讨了其反应动力学。结果表明:钯修饰多壁碳纳米管(MWCNTs)电极电催化氧化降解三氯生的最佳条件为:三氯生初始浓度为50 mg/L,电流密度约为10 mA/cm2,极板间距为1 cm,pH为11,电解质Na2SO4浓度为1 000 mg/L。此条件下,反应时间为3 h时三氯生的去除率可达到99%以上,三氯生的降解为零级反应。  相似文献   

2.
Wu TN 《Chemosphere》2007,69(2):271-278
This study utilized the electrocatalytic characteristics of nickel electrode to perform degradation of methyl tert-butyl ether (MTBE) in aqueous solution. Lab experiments were conducted in a spiltless bath type cell equipped with a nickel electrode as working electrode, a platinum wire as counter electrode, and an Ag/AgCl electrode as reference electrode. Effects of controlled potential, supporting electrolyte, and solution pH on the efficiency of MTBE removal were examined under the control of the constant-potential conditions. Experiment results showed that the optimum electrolytic condition was operated at 0.35 V in a 1M KOH electrolyte solution, and the initial 20 mgl(-1) MTBE was reduced by 73% within 180 min under the optimum control. As using 1M Na2SO4 and 1M KCl as electrolyte, the efficiency of MTBE removal dropped to 60% and 50% under the similar controls. Comparing with various pH controls, the strong basic condition is favorable for electrocatalytic oxidation of MTBE in the Ni-electrolytic system. The efficiency of MTBE removal showed a rising trend with increasing initial pH of the solution. The formation of a redox NiOOH/Ni(OH)2 layer on the anode surface, which was observed on the SEM image, can explain that nickel plays a mediator role on improving electrocatalytic oxidation of MTBE at 0.35 V in a strong basic condition. The by-products of MTBE degradation were identified as acetone and CO(2) by GC/MS, and the distributions of carbon atoms in acetone, CO2, and MTBE were found 22%, 51%, and 27% through the optimum control of electrochemical oxidation.  相似文献   

3.
三维电极法深度处理维生素生产废水   总被引:1,自引:0,他引:1  
采用三维电极法对维生素废水进行深度处理,分别以钛涂钌铱板、铁板和不锈钢板作为电极阳极,石墨板作为电极阴极,柱状活性炭作为粒子电极,结果表明,当以钛涂钌铱板作为阳极,以粒径为1 mm的柱状活性炭作为粒子电极时电解效果最好,COD和色度去除率最高。实验选择电解电压、电极板间距、电解时间和初始pH值作为主要影响因素进行正交实验,实验研究证明,各因素的影响大小为电解电压>电极板间距>电解时间>初始pH值,得到的最佳参数组合分别为:电解电压为10 V,电极板间距为8 cm,电解时间为20 min,初始pH值为4,得到COD和色度最大去除率分别为59.5%和93.57%。  相似文献   

4.
The electrolysis of some chlorinated organic compounds such as chloroacetic acids, chloromethanes and chloroethenes were carried out on a photo-irradiated n-TiO(2) electrode applied a constant potential, 1.0 V vs. Ag/AgCl, and the alternated pulse potentials of +1.0 V and various negative potentials, -1.0, -1.2 and -1.4V vs. Ag/AgCl in 0.1 mol dm(-3) Na(2)SO(4) solutions saturated with oxygen or with nitrogen. These compounds were degraded on the n-TiO(2) electrode by the photo-electrolysis and mineralized to carbon dioxide, carbon monoxide and chloride ion. When the alternated pulse potentials were applied, the mineralization yields were increased for these compounds, especially for trichloroacetic acid and carbon tetrachloride, both of which were comparatively stable to the degradation in the constant potential electrolysis. The presence of oxygen in the solution was effective for the mineralization of these compounds, while little effective for that of trichloroacetic acid and of carbon tetrachloride.  相似文献   

5.
Brillas E  Casado J 《Chemosphere》2002,47(3):241-248
The degradation of 10-30 l of a 1000 ppm aniline solution in 0.050 M Na2SO4 + H2SO4 at pH 3.0 and 40 degrees C by Electro-Fenton and peroxi-coagulation processes at constant current until 20 A has been studied using a pilot flow reactor in recirculation mode with a filter-press cell containing an anode and an oxygen diffusion cathode, both of 100 cm2 area. H2O2 is produced by the two-electron reduction of O2 at the cathode, being accumulated with a current efficiency between 60% and 80% at the first stages of electrolyses performed with a Ti/Pt anode. In the presence of 1 mM Fe2+, less H2O2 is accumulated, but it is not detected using an Fe anode. The Electro-Fenton process with 1 mM Fe2+ and a Ti/Pt or DSA anode yields an insoluble violet polymer, while the soluble total organic carbon (TOC) is gradually removed, reaching 61% degradation after 2 h at 20 A. In this treatment, pollutants are preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe2+ with H2O2. The peroxi-coagulation process with an Fe anode has higher degradation power, allowing to remove more than 95% of pollutants at 20 A, since some intermediates coagulate with the Fe(OH)3 precipitate formed. Both advanced electrochemical oxidation processes (AEOPs) show moderate energy costs, which increase with increasing electrolysis time and applied current.  相似文献   

6.
采用浸渍-热分解法制备了含IrOx-TiO2中间层的IrO2-SnO2电极,得到的电极具有较高的析氯电催化活性和较强的稳定性,并通过电化学氧化法对Na2SO3海水脱硫模拟液进行处理,考察了电流密度、温度、pH值和电解时间等电解工艺参数对Na2SO3去除率和化学需氧量COD的影响。结果表明,在电流密度为200 mA/cm^2,pH值为3.5,电解440 mg/L的Na2SO3海水脱硫模拟液,15 min时Na2SO3去除率可达96.5%,COD去除率可达82.6%。  相似文献   

7.
杨波  孙也  付安然  杜丹 《环境工程学报》2014,8(4):1475-1481
采用Ti/SnO2电极间接阳极氧化法处理直接深棕M和活性艳蓝KNR模拟染料废水,研究电解质种类、pH、电压、NaCl投加量及电解时间对其降解效果的影响;在最佳组合条件下,通过分析UV-Vis光谱以及降解过程中氮元素的存在形式,研究上述2种染料的降解规律。结果表明,在pH为3,电压20 V,NaCl投加量为2.5 g/L的条件下,电解30 min后,直接深棕M和活性艳蓝KNR的脱色率分别达到80%和95%,60 min后直接深棕M的COD去除率可达75%,活性艳蓝KNR的COD去除率达到90%;电解60 min后,直接深棕M的偶氮双键完全破坏,萘环和苯环结构被逐步降解,活性艳蓝KNR溶液电解2 min,其分子结构中的蒽醌共轭体系被破坏,随反应的进行,蒽醌结构逐渐被破坏,染料逐步降解。  相似文献   

8.
以毡状活性炭纤维为阳极,不锈钢为阴极,吸附-电化学氧化耦合降解对氯苯酚废水进行了研究。考察了吸附或耦合电化学氧化过程、电流密度、支持电解质硫酸钠浓度和活性炭纤维重复使用对废水COD去除率的影响,结果表明,采用吸附-电化学氧化耦合方法,当电流密度7.6 mA/cm2支持电解质(硫酸钠)浓度为1 g/L,处理时间为180 min,4-CP废水COD去除率可达97.09%。毡状活性炭纤维对4-CP的静态吸附过程符合Langmiu吸附等温方程。建立了吸附-电化学氧化COD去除动力学模型,动力学模型参数表明,对于COD的去除,电化学氧化作用比吸附作用大。  相似文献   

9.
采用Ti/SnO2电极间接阳极氧化法处理直接深棕M和活性艳蓝KNR模拟染料废水,研究电解质种类、pH、电压、NaCl投加量及电解时间对其降解效果的影响;在最佳组合条件下,通过分析uV—Vis光谱以及降解过程中氮元素的存在形式,研究上述2种染料的降解规律。结果表明,在pH为3,电压20V,NaCl投加量为2.5g/L的条件下,电解30min后,直接深棕M和活性艳蓝KNR的脱色率分别达到80%和95%,60min后直接深棕M的COD去除率可达75%,活性艳蓝KNR的COD去除率达到90%;电解60min后,直接深棕M的偶氮双键完全破坏,萘环和苯环结构被逐步降解,活性艳蓝KNR溶液电解2min,其分子结构中的蒽醌共轭体系被破坏,随反应的进行,蒽醌结构逐渐被破坏,染料逐步降解。  相似文献   

10.
混凝辅助电化学法处理橙黄G染料废水   总被引:1,自引:0,他引:1  
以石墨板为阳极,研究了电化学氧化法对橙黄G染料废水的降解效果。比较了在NaCl、Na2 SO4以及NaCl与FeSO4·7H2O组合的支持电解质体系中的处理效果,同时考察了电压、初始pH、电解质浓度、电极间距和电解时间等因素对废水中橙黄G脱色率及COD去除率的影响。研究结果表明,橙黄G的脱色主要是活性氯的氧化作用,橙黄G分子的矿化可能主要是电解过程中产生的·OH的作用,FeSO4·7H2O的加入增加了混凝作用,使得处理效果进一步提高。最佳脱色条件下橙黄G脱色率和COD的去除率分别为97.6%和56.3%,B/C(BOD/COD)由0.09提高至0.41,可生化性有较大改善,并且随着降解时间的增加,COD去除率逐渐升高。此结果表明,橙黄G废水COD的去除相对于脱色存在滞后性。  相似文献   

11.
The electrochemical oxidation of the biotic degradation products of the textile dye C.I. Acid Orange 7 (AO7) was achieved using a boron doped diamond electrode (BDD). Tests were performed with model solutions of the biotic degradation products, sulphanilic acid (SA) and 1-amino-2-naphthol (AN), and also with real effluents obtained in experiments carried out in an up-flow anaerobic sludge blanket (UASB) reactor, fed with a simulated textile effluent containing AO7, working in mesophilic or thermophilic conditions. Bulk electrolysis was studied using two different supporting electrolytes - NaCl and Na(2)SO(4). The influence of initial metabolite concentration and current density on the electrodegradation rates of the biotic products was investigated. For the UASB effluents, oxidation tests were carried out for different electrolytes and at different current densities. Samples were collected at pre-selected intervals and absorbance measurements, chemical oxygen demand (COD) and total organic carbon (TOC) tests and high performance liquid chromatography (HPLC) analysis were performed. Results have shown an almost complete elimination of the persistent pollutants and a COD removal higher than 70% for both AN and SA. For the UASB effluents, COD removals between 45% and 90% and TOC removals varying from 19% to 41% were obtained.  相似文献   

12.
The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8 %, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9 %, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9?±?2 and 85.5?±?2 %, whereas 70 % of total organic carbon removal was achieved.  相似文献   

13.
Basic yellow 28 (SLY) and Reactive black 5 (CBWB), which are respectively methine and sulfoazo textile dyes were individually exposed to electrochemical treatment using diamond-, aluminium-, copper- and iron-zinc alloy electrodes. The generated current was registered with time during electrolysis of the dye solutions and the color variation and the formation of degradation products were followed using HPLC with diode array detection. Four different electrodic materials were tested by applying different potentials in the range -1.0 to -2.5 V and presented 95% color removal and COD removal of up to 65-67% in the case of CBWB dye solution treated with the copper and iron electrodes. Efficiency was enhanced with stirring and flow in relation to the stationary regime. The kinetic parameter reaction rate was used to establish the effect of flow, potential, electrode nature and pH. The formation and characterization of the precipitate formed under certain conditions is reported and discussed.  相似文献   

14.
以一种典型的联苯胺类直接偶氮染料刚果红为模型物,利用自制活性炭电极,研究各种因素(扫描电压、溶液初始浓度、电解质浓度、pH、电极活性炭用量等)对电吸附效果的影响.结果表明,在-1.0~1.0V的扫描电压下,刚果红没有氧化还原反应发生,电吸附是一稳定而又可逆的过程;扫描电压负极化使刚果红的吸附率降低,而正极化能明显提高吸附率,在0.9V扫描电压下的吸附率比开路(扫描电压为零)时提高了18.6百分点;刚果红溶液的初始浓度越高,吸附平衡时的吸附容量越高,但吸附率反而降低,刚果红溶液的初始质量浓度为40 mg/l时的吸附容量是10 mg/L时的4.87倍,而吸附率降低了21.4%;随着电解质Na2SO4的加入,加快了刚果红在溶液中的运动速率,但刚果红的最终去除率有所降低,并且在一定范围内Na2SO4加入的越多,刚果红的最终吸附效果越差;pH为7(未调节)时,活性炭电极对刚果红的吸附率最高,pH为2、11时,吸附率均有所降低;随着电极活性炭用量的增加,刚果红的吸附容量逐渐降低,吸附率则逐渐提高,达到吸附平衡所需时间相应也延长.  相似文献   

15.
In this study, advanced oxidation process utilizing Fenton's reaction was investigated for the decolorization and degradation of two commercial dyes viz., Red M5B, Blue MR and H-acid, a dye intermediate used in chemical industries for the synthesis of direct, reactive and azo dyes. Effect of Fe2 +, H2O2, pH, and contact time on the degradation of the dyes was studied. Maximum color and COD removal was obtained for Red MSB, H-acid and Blue MR at 10-25 mg/l of Fe2+ dose and 400-500 mg/l of H2O2 dose at pH 3.0. The initial oxidation reaction was found to fit into first order rate kinetics and the rate of oxidation of H-acid was higher than the other dyes. Release of chloride and sulfate from the Fenton's treated Red M5B dye and sulfate from H-acid and Blue MR indicates that the dye degradation proceeds through cleavage of the substituent group.  相似文献   

16.
电催化氧化法处理染料废水的影响因素及动力学   总被引:1,自引:0,他引:1  
以钛涂膜极板为阳极、石墨极板为阴极、Fe2O3/γ-Al2O3为多相催化剂,构建电-多相催化氧化体系,研究了该体系对酸性大红模拟染料废水中COD的去除效果及其影响因素,优化了实验条件,并初步探讨了COD的降解机理。结果表明,在槽电压20 V,pH 4,曝气量0.24 m3/h,极板间距3 cm的条件下,COD的去除率最高,达到64.5%;COD的降解近似符合一级动力学方程:ln(C0/C)=0.0034t+0.719。在电-多相催化氧化体系中,废水中的有机物被直接矿化或降解为小分子有机物。  相似文献   

17.
The combined electrochemical oxidation-solar-light/immobilized TiO2 film process was conducted to degrade an azo dye, Reactive Black 5 (RB5). The toxicity was also monitored by the Vibrio fischeri light inhibition test. The electrochemical oxidation rapidly decolorized RB5 (55, 110 μM) with a supporting electrolyte of 2 g l−1 NaCl at current density 277 A m−2 and pH 4. However, TOC mineralization and A310 removal were low. Additionally, the treated solution showed high biotoxicity. RB5 at 110 μM significantly retarded the de-colorization efficiency by using the solar-light/immobilized TiO2 film process. The combined electrochemical oxidation-solar-light/immobilized TiO2 process effectively increased the removal of color, A310, and TOC. The toxicity was also significantly reduced after 3 h of solar irradiation. The results indicated that the low-cost combined process is a potential technique for rapid treatment of RB5.  相似文献   

18.
Photodegradation of an azo dye of the textile industry   总被引:2,自引:0,他引:2  
An advanced oxidation treatment, UV/H2O2, was applied to an azo dye, Hispamin Black CA, widely used in the Peruvian textile industry. Rates of color removal and degradation of the dye have been evaluated. A strongly absorbing solution was completely decolorized after 35 min of treatment, and after 60 min an 82% reduction of the total organic carbon (TOC) was obtained. It has been found that the degradation rate increased until an optimum value, beyond which the reagent exerted an inhibitory effect. The degradation rate was also function of pH.  相似文献   

19.
Meriç S  Kaptan D  Olmez T 《Chemosphere》2004,54(3):435-441
In this study, Reactive Black 5 (RB5) was removed from synthetic wastewater using Fenton's oxidation (FO) process. Experiments were conducted on the samples containing 100 and 200 mg l(-1) of RB5 to remove the dye toxicity. Seventy-five milligram per litre of RB5 caused 25% toxicity on 24-h born daphnids whereas 100 mg l(-1) of RB5 displayed 100% toxicity on Daphnia magna. The study was performed in a systematic approach searching optimum values of FeSO(4) and H(2)O(2) concentrations, pH and temperature. Optimum pH and temperature for 100 mg l(-1) of RB5 were observed as 3.0 and 40 degrees C, respectively, using 100 mg l(-1) of FeSO(4) and 400 mg l(-1) of H(2)O(2) resulted in 71% chemical oxygen demand (COD) and 99% color removal. For 200 mg l(-1) of RB5, 84% COD removal was obtained using 225 mg l(-1) of FeSO(4) and 1000 mg l(-1) of H(2)O(2) yielding 0.05 molar ratio at pH 3.0 and 40 degrees C. Color removal was also more than 99%. The optimum conditions determined in accordance with the literature data. The H(2)O(2) requirement seems to be related to initial COD of the sample. FeSO(4)/H(2)O(2) ratios found were not changed for both concentrations. The temperature affected the COD removal significantly at high degrees. Toxicity was completely removed for each concentration of RB5 at optimum removal conditions.  相似文献   

20.
分别采用脉冲电解法、混凝沉淀法、芬顿氧化法、高铁酸钾氧化法对垃圾渗滤液生化出水进行处理,考察了处理效果。结果表明:铁电极电解法和芬顿试剂氧化法均能脱除垃圾渗滤液的色度,去除有机物质。铁电极电解对色度的去除率可达98.4%,COD去除率可达84.4%;芬顿试剂氧化对色度的去除率可达99%,COD去除率可达85.8%。两种方法均能使出水达到排放标准。同时比较了各种处理方法的运行成本,在达到同样出水标准的前提下,铁电极电解运行成本远低于芬顿试剂氧化,为3.67元/t水,而芬顿试剂药剂成本为8.67元/t水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号