首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Water requirements to supply human needs lead water stakeholders to store more water during surplus periods to fulfil the demand during – not only – scarcity periods. At the reservoirs, mostly those in semi-arid regions, water level then fluctuates extremely between rises and downward during one single year. Besides of water management implications, changes on physical, chemical and biological dynamics of these drawdown and refilling are little known yet. This paper shows the results, throughout a year, on solids, nutrients (N and P), chlorophyll-a, and sedimentation changes on the dynamics, when the former policy was applied in a reservoir from the semi-arid Northwestern Mexico. Water level sinusoidal trend impinged changes on thermal stratification and mixing, modifying nutrient cycling and primary producer responses. According to nitrogen and phosphorus concentration as well as chlorophyll-a, reservoir was mesotrophic, becoming hypertrophic during drawdown. Nutrient concentrations were high (1.22 ± 0.70 and 0.14 ± 0.12 mg P l−1), increasing phosphorus and lowering N:P significantly throughout the study period, although no intensive agricultural, no urban development, neither industrial activities take place in the watershed. This suggests nutrient recycling complex mechanisms, including nutrient release from the sediment–water interface as the main nutrient pathway when shallowness, at the same time as mineralization, increases. Outflows controlled nitrogen and phosphorus availability on the ecosystem while organic matter depended on river inflows. As on other subtropical aquatic ecosystems, nitrogen limited primary productivity (Spearman correlation R = 0.75) but chlorophyll-a seasonal pattern showed an irregular trend, prompting other no-nutrient related limitants. Shallowness induced a homogeneous temporal pattern on water quality. This observed temporal variability was mainly explained statistically by changes on solids (mineral and organic), chlorophyll-a and flows (62.3%). Annual sedimentation rates of total solids ranged from 11.73 to 16.29 kg m−2 year−1 with organic matter comprising around 30%. N:P ratio on sedimentation rates were as high as could be expected in a resuspension dominated ecosystem, and spatially inverse related with N:P ratio on bottom sediments. Distance from river inlet into the reservoir reveals a marked spatial heterogeneity on solid and nitrogen sedimentation, showing the system dependence on river inflows and supporting resuspension as the main phosphorus pathway. Accretion rates (2.19 ± 0.40 cm year−1) were not related to hydrological variability but decreased with the distance to the river input. Total sediment accumulation (9,895 tons km−2 year−1) denotes siltation as other serious environmental problem in reservoirs but possibly not related with operational procedures.  相似文献   

2.
Following the completion of the Three-Gorges Dam, there was a strong spring phytoplankton bloom in Xiangxi Bay of Three-Gorges Reservoir. However, our knowledge of relationship between spring phytoplankton bloom and environmental factors was still limited. In this study, phytoplankton species composition, biomass, chlorophyll a concentration and environmental factors at two sampling sites in Xiangxi Bay were investigated during 25 March to 18 May 2007. The Xiangxi Bay was eutrophic with the lowest values of total nitrogen and total phosphorus being 0.80 and 0.07?mg/L, respectively. A total of 66 algal taxa belonging to seven phyla and 45 genera were identified. Peridiniopsis niei Liu was the most abundant species which preferred standing water. Canonical correspondence analysis and correlation analysis revealed that nitrate was significantly associated with phytoplankton growth. The phytoplankton chlorophyll a concentration was correlated significantly negatively with nitrate concentration, and nitrate concentration was very low during bloom periods. Heavy rainfall was the main reason of phytoplankton chlorophyll a concentration and biomass decreasing and blooms disappearing. In addition, heavy rainfall also brought more nitrate into the Bay which provided sufficient nitrogen source for blooms occurring again.  相似文献   

3.
A significant variation in physicochemical properties of the Kalpakkam coastal waters, eastern part of India, was observed during the event of southwest to northeast monsoon transition. Increase in nitrate, total nitrogen, and silicate concentrations were noticed during post-transition period. Ammonia concentration was at peak during transition period as compared to pre- and post-transition periods. Hypo-saline condition (~23 psu) was observed during post-transition as the surface water salinity decreased by ~10 psu from the pre-transitional values. Turbidity, suspended particulate matter, phosphate and total phosphorous values decreased marginally, coinciding with northward to southward current reversal. A drastic decrease (eightfold) in chlorophyll-a concentration was observed in the coastal water during post-transition period.  相似文献   

4.
Wang  Jing  Geng  Yan  Zhao  Qiuna  Zhang  Yin  Miao  Yongtai  Yuan  Xumei  Jin  Yuxi  Zhang  Wen 《Environmental Modeling and Assessment》2021,26(4):529-541

With the increasingly serious problem of surface water environmental safety, it is of great significance to study the changing trend of reservoir water quality, and it is necessary to establish a water quality prediction and early warning system for the management and maintenance of water resources. Aiming at the problem of water quality prediction in reservoirs, a CA-NARX algorithm is designed, which combines the improved dynamic clustering algorithm with the idea of machine learning and the forward dynamic regression neural network. The improved dynamic clustering algorithm is used to classify the eutrophication degree of waterbodies according to the total phosphorus and total nitrogen content. Considering four meteorological factors, air temperature, water temperature, water surface evaporation, and rainfall, synthetically for each water quality condition, the total phosphorus and total nitrogen in the waterbody are forecasted by an improved forward NARX dynamic regression neural network. Based on this, the CA-NARX prediction algorithm can realize short period water quality prediction. Compared with the traditional support vector regression machine model, improved GA-BP neural network, and exponential smoothing method, the CA-NARX model has the least prediction error.

  相似文献   

5.
为精准治理流域非点源氮磷污染,基于SWAT模型,运用本地区第二次全国污染源普查数据和2000—2019年流域水文、水质数据,开展湘江永州流域非点源氮磷污染模拟。结果表明:湘江永州流域建立的SWAT模型具有较好的模拟效果,流域2005—2019年的总氮月均污染负荷为383.40~17 998.70 t/m;总磷月均污染负荷为64.62~567.86 t/m,总氮和总磷各月污染负荷均与各月降雨量呈显著相关关系;农田和林地是本流域总氮、总磷污染负荷总量最大的2种用地类型,但两者之间单位面积输出的污染负荷强度却相反,林地对流域水污染防控具有正面效应,农田种植面源污染是非点源氮磷污染治理的重点。  相似文献   

6.
Pathogens are the number one cause of impairments of assessed rivers and streams in the USA and pose a significant human health hazard. The Dry Run Creek Watershed in Northeast Iowa has been designated as impaired by the State of Iowa because of high levels of Escherichia coli bacteria. To investigate the nature of this impairment, land use and stream bank assessments were coupled with comprehensive water quality monitoring. Physical, chemical, and biological parameters were measured at 13 different sites in the watershed, including pH, temperature, conductivity, dissolved oxygen, turbidity, total Kjeldahl nitrogen, ammonia-N, nitrate?+?nitrite-N, total phosphorus, and E. coli. In addition, benthic macroinvertebrate communities were analyzed at seven sites, and optical brightener tests were performed late in the season. Results identified segments of the watershed that were more prominent contributors of E. coli, and correlations were observed between levels of E. coli and several chemical parameters, including ammonia-N, total Kjeldahl nitrogen, and total phosphorus. Interestingly, distinct sites emerged as more prominent contributors of these elements during rain vs. non-rain events, suggesting different types of sources. Both the amount of rainfall and the time elapsed between the rain event and the sampling influenced E. coli levels during wet weather conditions. Nitrate?+?nitrite-N displayed a unique response to rain events compared with the other parameters, suggesting a different delivery route. Analyses of benthic macroinvertebrate communities were consistent with pollution trends. Collectively, these data suggest distinct agriculturally related E. coli contributions, as well as specific areas and practices for water quality improvement strategies. This study can serve as a resource for evaluating agricultural watersheds that are impaired for bacteria.  相似文献   

7.
A coupled three-dimensional hydrodynamic–ecological model was used for the assessment of water quality in Narva Bay during one biologically active season. Narva Bay is located in the south-eastern Gulf of Finland. Narva River with a catchment’s area covering part of Russia and Estonia discharges water and nutrients to Narva Bay. The ecological model includes phytoplankton carbon, nitrogen and phosphorus, chlorophyll a, zooplankton, detritus carbon, nitrogen and phosphorus, inorganic nitrogen, inorganic phosphorus and dissolved oxygen as state variables. Both the hydrodynamic and ecosystem models were validated using a limited number of measurements. The hydrodynamic model validation included comparison of time series of currents and temperature and salinity profiles. The ecological model results were compared with the monitoring data of phytoplankton biomass, total nitrogen and phosphorus and dissolved oxygen. The comparison of hydrodynamic parameters, phytoplankton biomass, surface layer total phosphorus and dissolved oxygen and near-bottom layer total nitrogen was reasonable. Time series of spatially mean values and standard deviations of selected parameters were calculated for the whole Narva Bay. Combining model results and monitoring data, the characteristic concentrations of phytoplankton biomass, total nitrogen and phosphorus and near-bottom dissolved oxygen were estimated. Phytoplankton biomass and total phosphorus showed seasonal variations, of 0.6–1.1 and 0.022–0.032 mg/l, respectively, during spring bloom, 0.1–0.3 and 0.015–0.025 mg/l in summer and 0.2–0.6 and 0.017–0.035 mg/l during autumn bloom. Total nitrogen and near-bottom oxygen concentrations were rather steady, being 0.25–0.35 and 2–6 mg/l, respectively. The total nitrogen and phosphorus concentrations show that according to the classification of Estonian coastal waters, Narva Bay water belongs to a good water quality class.  相似文献   

8.
The coastal waters of American Samoa’s five high islands (Tutuila, Aunu’u, Ofu, Olosega, and Ta’u) were surveyed in 2004 using a probabilistic design. Water quality data were collected from the near-shore coastal habitat, defined as all near-shore coastal waters including embayments, extending out to 1/4 mile off-shore. Hydrography and water column samples were collected, and water quality data were compared to the Territorial water quality standards for pH, dissolved oxygen (DO), Enterococcus, chlorophyll a, water clarity, total nitrogen, and total phosphorus. All station measurements for pH, DO, and Enterococcus satisfied the local water quality standards, although some fraction of the Territory could not be assessed for either DO or Enterococcus. With respect to chlorophyll a, 66 ± 18% of Territory coastal waters complied with the standard, while 34 ± 18% failed to comply with the standard. For water clarity, 54 ± 18% of the Territorial waters complied with the standard while 42 ± 7% failed to comply. Territorial waters satisfied the standards for total nitrogen and phosphorus 72 ± 17% and 92 ± 10%, respectively. These data provide the first “big-picture” view of water quality in the near shore region around the high islands of American Samoa. While the picture is encouraging, these data suggest emerging water quality concerns.  相似文献   

9.
Water quality data at 12 sites within an urban, a suburban, and a rural stream were collected contemporaneously during four wet and eight dry periods. The urban stream yielded the highest biochemical oxygen demand (BOD), orthophosphate, total suspended sediment (TSS), and surfactant concentrations, while the most rural stream yielded the highest total organic carbon concentrations. Percent watershed development and percent impervious surface coverage were strongly correlated with BOD (biochemical oxygen demand), orthophosphate, and surfactant concentrations but negatively with total organic carbon. Excessive fecal coliform abundance most frequently occurred in the most urbanized catchments. Fecal coliform bacteria, TSS, turbidity, orthophosphate, total phosphorus, and BOD were significantly higher during rain events compared to nonrain periods. Total rainfall preceding sampling was positively correlated with turbidity, TSS, BOD, total phosphorus, and fecal coliform bacteria concentrations. Turbidity and TSS were positively correlated with phosphorus, fecal coliform bacteria, BOD, and chlorophyll a, which argues for better sedimentation controls under all landscape types.  相似文献   

10.
Interpretations of state and trends in lake water quality are generally based on measurements from one or more stations that are considered representative of the response of the lake ecosystem. The objective of this study is to examine how these interpretations may be influenced by station location in a large lake. We addressed this by analyzing trends in water quality variables collected monthly from eight monitoring stations along a transect from the central lake to the north in Lake Taihu (area about 2,338 km2), China, from October 1991 to December 2011. The parameters examined included chlorophyll a (Chl a), total nitrogen (TN), and total phosphorus (TP) concentrations, and Secchi disk depth (SD). The individual variables were increasingly poorly correlated among stations along the transect from the central lake to the north, particularly for Chl a and TP. The timing of peaks in individual variables was also dependent on station location, with spectral analysis revealing a peak at annual frequency for the central lake station but absence of, or much reduced signal, at this frequency for the near-shore northern station. Percentage annual change values for each of the four variables also varied with station and indicated general improvement in water quality at northern stations, particularly for TN, but little change or decline at central lake stations. Sediment resuspension and tributary nutrient loads were considered to be responsible for some of the variability among stations. Our results indicate that temporal trends in water quality may be station specific in large lakes and that calculated whole-lake trophic status trends or responses to management actions may be specific to the station(s) selected for monitoring and analysis. These results have important implications for efficient design of monitoring programs that are intended to integrate the natural spatial variability of large lakes.  相似文献   

11.
The Catskill/Delaware reservoirs supply 90% of New York City’s drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to Agency’s administrative review and approved for publication as an EPA document.  相似文献   

12.
Anthropogenic activities have led to water quality deterioration in many parts of the world, especially in Northeast China. The current work investigated the spatiotemporal variations of water quality in the Taizi River by multivariate statistical analysis of data from the 67 sampling sites in the mainstream and major tributaries of the river during dry and rainy seasons. One-way analysis of variance indicated that the 20 measured variables (except pH, 5-day biological oxygen demand, permanganate index, and chloride, orthophosphate, and total phosphorus concentrations) showed significant seasonal (p?≤?0.05) and spatial (p?<?0.05) variations among the mainstream and major tributaries of the river. Hierarchical cluster analysis of data from the different seasons classified the mainstream and tributaries of the river into three clusters, namely, less, moderately, and highly polluted clusters. Factor analysis extracted five factors from data in the different seasons, which accounted for the high percentage of the total variance and reflected the integrated characteristics of water chemistry, organic pollution, phosphorous pollution, denitrification effect, and nitrogen pollution. The results indicate that river pollution in Northeast China was mainly from natural and/or anthropogenic sources, e.g., rainfall, domestic wastewater, agricultural runoff, and industrial discharge.  相似文献   

13.
A set of geographically isolated differential nitrogen (N) and phosphorus (P) load model scenarios from major Chesapeake basins provides information on the relative impact of nutrient loads on primary production and dissolved oxygen in the Chesapeake Bay. Model results show the relationships of deep water dissolved oxygen with nutrient limitation-related algal blooms, organic carbon loads from the watershed, estuarine circulation, nutrient cycling, and nutrient diagenesis. The combined effect of changes in load from multiple basins is additive for changes in both chlorophyll-a and deep water dissolved oxygen concentrations. Management of both N and P are required in the Chesapeake watershed and tidal waters to achieve water quality standards, but overall efficiencies could be gained with strategies that place greater emphasis on P control in the upper Bay and greater emphasis on N control in the lower Bay. The areas of the Bay with the highest degree of dissolved oxygen degradation that generally drive management decisions are mostly P-limited and are significantly influenced by the load from the upper Bay’s basins. Reducing P from the upper Bay’s basins will intensify P limitation and would allow an increase in N of about six times the weight of P reduction. Combining the relative nutrient reduction effectiveness with the relative control cost information could improve management efficiency and provide benefits at a lower cost. This article describes initial steps that can be taken to examine the benefits from N-P exchanges.  相似文献   

14.
Knowledge of water quality conditions is essential in assessing the health of riverine ecosystems. The goal of this study is to determine the degree to which water quality variables are related to precipitation and air temperature conditions for a segment of the Pearl River Basin near Bogalusa, LA, USA. The AQUATOX ecological fate simulation model is used to estimate daily total nitrogen, total phosphorus, and dissolved oxygen concentrations over a 2-year period. Daily modeled output for each variable was calibrated against reliably measured data to assess the accuracy. Observed data were plotted against simulated data for controlled and perturbed models for validation, and stepwise multiple regression analysis was used to quantify the relationships between the water quality and meteorological variables. Results suggest that daily dissolved oxygen is significantly negatively correlated to concurrent daily mean air temperature with a total explained variance of 0.679 (p?<?0.01), and monthly dissolved oxygen is significantly negatively correlated to monthly mean air temperature with a total explained variance of 0.567 (p?<?0.01). Total mean monthly phosphorus concentration is significantly positively related to the previous month's precipitation with a total explained variance of 0.302 (p?<?0.01). These relationships suggest that atmospheric conditions have a strong influence on water quality in the Pearl Basin. Therefore, environmental planners should expect that future climatic changes are likely to alter water quality.  相似文献   

15.
In order to understand the water quality and the genotoxicity of various surfaces in the Guangzhou section of the Pearl River during January to December of 2008, we investigated and studied the current water situation of the surface microlayer (SML) and the subsurface water (SSW) in Guanzhou section (Zhongda Dock and Yuzhu Dock) of the Pearl River by chemical analysis and biological monitoring method (Vicia faba micronucleus test). The results showed that during these months concentrations of the indexes of the two docks water such as total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) exceeded the national III level of surface water quality, and the indexes of SML were much higher than the ones of SSW (P?< 0.05), and the exceeding rate of TN, TP of SML was 100%. According to the eutrophic evaluation standard, the water bodies of SML and SSW in the two docks were in a eutrophication during these months. The eutrophication and pollution of SML was more serious, and the highest index of eutrophication (E value) was up to 81.9, which also had obvious difference with COD and TP (P?< 0.05). The water of SML in the two docks enriched to N, P, and chlorophyll a (Chl. a) seriously, and the enrichment factor of SML in Zhongda Dock to N, P, and Chl. a was 0.71 ?? 2.78, 0.98 ?? 1.18, and 0.49 ?? 13.99, respectively, and the one in the Yuzhu Dock was 1.09 ?? 1.52, 1 ?? 1.14, and 0.72 ?? 4.07, respectively. Through inspecting the water genotoxicity of various layers by V. faba micronucleus test, we could know that the average annual MCN?? of SML and SSW in the two docks was 6.09??, 5.53??, 5.57??, and 5.249??, respectively. In general, the above value of SML was a little higher than the one of SSW, but there was not a remarkable difference (P?> 0.05). This research shows that the water quality in a medium to heavy eutrophication in the Guangzhou section of Pearl River belongs to national III ?? IV level, and SML has the capability of enrichment to the pollutants such as N and P and induces the increase of micronucleus rate of V. faba tip cell. The study also indicates that there may be genotoxicity matters such as N, P in water body.  相似文献   

16.
研究了陕北主要石油勘探开发地区地表水的水质状况,分析了pH、矿化度(全盐量)、硬度、六价铬、砷、镉、铅、氨氮、挥发酚、石油类、化学需氧量(COD)、氯化物、硫酸盐、硝酸盐氮、总磷、氰化物、氟化物等17个指标,结果显示砷、镉、铅、氟化物、硝酸盐、氰化物、氟化物的Pi值均小于1;挥发酚、总磷、石油类、氨氮、COD、六价铬、硫酸盐、矿化度、氯化物、硬度均超标。研究区东部和西部地表水呈现出不同的污染特征,通过分析不同区域污染物来源,提出了污染防治对策与建议。  相似文献   

17.
A study pertaining to the seasonal variation in physicochemical properties of the coastal waters was carried out at Kalpakkam coast for a period of 1 year (February 2006 to January 2007). It revealed that the coastal water was significantly influenced by freshwater input during North East (NE) monsoon and post-monsoon periods. Concentration of all the nutrients and dissolved oxygen (DO) was relatively high during the NE monsoon, whereas, salinity and chlorophyll-a (chl-a) were at their minimum level during this period. Phytoplankton production peak was observed in summer during which a typical marine condition prevailed. The present observed values of nitrate, phosphate, silicate, and turbidity are significantly high (five to ten times) compared to that of the pre-Tsunami period from this coast. Relatively low DO and chl-a concentration was noticed during the post-Tsunami period. A notable feature of this study is that though nutrient concentration in the coastal waters during post-Tsunami period has increased significantly, turbidity, the most single dominating factor, was found to adversely affect the phytoplankton production during post-Tsunami period as reflected by relatively low chl-a concentration. Thus, the post-Tsunami period may result in a change in coastal biodiversity pattern concomitant with change in coastal water quality.  相似文献   

18.
Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication problems, legislation on nutrient application in agriculture was enforced in 1986 in The Netherlands. The objective of this study was to evaluate this manure policy by assessing the water quality status and trends in agriculture-dominated headwaters. We used datasets from 5 agricultural test catchments and from 167 existing monitoring locations in agricultural headwaters. Trend analysis for these locations showed a fast reduction of nutrient concentrations after the enforcement of the manure legislation (median slopes of ?0.55 mg/l per decade for total nitrogen (N-tot) and ?0.020 mg/l per decade for total phosphorus (P-tot)). Still, up to 76 % of the selected locations currently do not comply with either the environmental quality standards (EQSs) for nitrogen (N-tot) or phosphorus (P-tot). This indicates that further improvement of agricultural water quality is needed. We observed that weather-related variations in nutrient concentrations strongly influence the compliance testing results, both for individual locations and for the aggregated results at the national scale. Another important finding is that testing compliance for nutrients based on summer average concentrations may underestimate the agricultural impact on ecosystem health. The focus on summer concentrations does not account for the environmental impact of high winter loads from agricultural headwaters towards downstream water bodies.  相似文献   

19.
Seven years (2010–2016) of data on the basic physicochemical properties of seawater, temperature, salinity, dissolved oxygen (DO), nutrients, chlorophyll a (Chl a), and hydrocarbons from two lagoons were used to evaluate the impact of the anthropogenic activities inside the lagoon on the water quality and to explore the relationship of any impact from the lagoons’ design. Statistical analysis shows the modification in water quality inside the lagoon compared to the ambient seawater is particularly evident for nitrate, silicate, and Chl a. The modification is attributed to the extensive boat activities in the lagoons and the limited water exchange between the lagoons and ambient seawater. However, the impact to both lagoons is generally limited to inside the lagoons. The oligotrophic state of the two lagoons was evaluated and it was found that the most marked code violations were found in DIN inside both lagoons. In order to explore the design importance, the water exchange and overall water quality was compared between the two lagoons. This study highlights the importance of an environmental design study before the construction of any lagoon project. Proper design would maintain acceptable water quality inside the lagoons, critical for environmental health and supporting continued recreational activities.  相似文献   

20.
The shores of the Golden Horn—once most important seaport of the region—represented throughout history a romantic and recreational venue. This tributary to the Bosphorus, however, became seriously polluted with the extensive industrialization and rapid population growth in Istanbul over the past century. Two main tributaries, the Alibeykoy and the Kagithane, dumped both liquid and solid waste from residential areas and industry (small and large-scale) into the Golden Horn. As a result of this pollution, the landward three to four kilometers of the estuary became swamped with sediment. The dominance of anaerobic activity resulted in a highly unpleasant smell, and the shallow depth as one progressed up the bay restricted navigation. In early 1997 The Istanbul Metropolitan Municipality began a dredging operation and gradually diverted all domestic and industrial wastewater discharge from the Golden Horn. Since then there have been remarkable improvements in water quality. This paper presents the state of eutrophication through the water body of the Golden Horn; parameters such as DO, TKN, NH3-N, NO3-N, the total phosphorus (TP) and dissolved phosphorus (PO4-P), phytoplankton and chlorophyll-a have been were analyzed in samples of water taken from various points in the Golden Horn. The presence of DO and the phytoplankton, both indicators of primary productivity in an aquatic body, has been evaluated in relation to former conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号