首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
石墨炉原子化机理研究方法评述   总被引:1,自引:0,他引:1  
评述了近年来石墨炉原子化机理研究中用得较多的研究方法,包括热力学方法、动力学方法、原子吸收光谱法、X射线衍射法、X射线光电子能谱法、俄歇电子能谱法、扫描电镜法、分子吸收光谱法和质谱法.每种方法均有其优缺点,综合运用多种研究方法,特别是理论研究与实验研究相结合,更好地阐明原子化机理.  相似文献   

2.
In this paper, magnetic carbon nanotube (M-CNT) was synthesized. The photocatalytic dye degradation ability of M-CNT in the presence of hydrogen peroxide (H2O2) from colored wastewater was studied. Manganese ferrite (MnFe2O4) was synthesized in the presence of multiwalled carbon nanotube. Direct Red 23 (DR23), Direct Red 31 (DR31), and Direct Red 81 (DR81) were used as anionic dyes. The characteristics of M-CNT were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The photocatalytic dye degradation using M-CNT was studied by UV–vis spectrophotometer and ion chromatography (IC). The effects of M-CNT dosage, initial dye concentration, and salt on the degradation of dye were evaluated. Formate, acetate, and oxalate anions were detected as dominant aliphatic intermediates. Inorganic anions (nitrate and sulfate anions) were detected and quantified as the mineralization products of dyes during the degradation process. The results indicated that the M-CNT could be used as a magnetic catalyst to degrade anionic dyes from colored wastewater.  相似文献   

3.
In this work, two technologies are studied for the removal of phenol from aqueous solution: dynamic adsorption onto activated carbon and photocatalysis. Almond shell activated carbon (ASAC) was used as adsorbent and catalytic support in the phenol degradation process. The prepared catalyst by deposition of anatase TiO2 on the surface of activated carbon was characterized by scanning electron microscopy, sorption of nitrogen, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and pHZPC point of zero charge. In the continuous adsorption experiments, the effects of flow rate, bed height, and solution temperature on the breakthrough curves have been studied. The breakthrough curves were favorably described by the Yoon–Nelson model. The photocatalytic degradation of phenol has been investigated at room temperature using TiO2-coated activated carbon as photocatalyst (TiO2/ASAC). The degradation reaction was optimized with respect to the phenol concentration and catalyst amount. The kinetics of disappearance of the organic pollutant followed an apparent first-order rate. The findings demonstrated the applicability of ASAC for the adsorptive and catalytic treatment of phenol.  相似文献   

4.
‘Metal ash’ presents a waste disposal problem in most of the developing countries as the industries employ obsolete technologies. In this paper we describe analysis of tin ash, zinc ash and aluminium ash by means of optical methods, such as X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), electron probe micro analysis (EPMA), scanning electron microscopy (SEM) and chemical methods. The results of tin ash obtained by XRD method matched well with the cassiterite, a naturally occurring mineral of tin. ICP-MS studies reveal the presence of a large number of tracer metals, which may cause pollution by tertiary dispersion and this aspect is discussed. Conversely, the data generated by chemical methods are limited. However, the methods are simple and cost-effective. Then, they can easily be adopted by low-budget industries. Simple and cost-effective process to recover tin from tin ash is described. It is based on heating tin ash with sodium cyanide to about 900°C to separate tin component from the metal ash. The process recovers good quality tin and offers a very high yield. The process can be scaled up to small pilot plant.  相似文献   

5.
The environmental impact of biomethanogenesis is related to its ecological role, accumulation and effect as a greenhouse gas, and application in anaerobic digestion for conversion of biomass and wastes to methane and compost. Biological formation of methane is the process by which bacteria decompose organic matter using carbon dioxide as an electron acceptor in the absence of dioxygen or other electron acceptors. This microbial activity is responsible for carbon recycling in anaerobic environments, including wetlands, rice fields, intestines of animals sediments, and manures. The mixed consortium of microorganisms involved includes a unique group of bacteria, the methanogens, which may be considered to be in a separate kingdom based on genetic and phylogenetic variance from all other life forms. Because methane is a significant and increasing greenhouse gas, its source fluxes and their potential reduction are of concern. Biomethanogenesis may be harnessed for reduction of wastes and conversion of renewable resources to significant quantities of substitute natural gas which could mitigate carbon dioxide and other pollutants related to use of fossil fuels.  相似文献   

6.
In this paper, copper ferrite nanoparticle (CFN) was synthesized, modified by cetyl trimethylammonium bromide, and characterized. Dye removal ability of the surface modified copper ferrite nanoparticle (SMCFN) from single system was investigated. The physical characteristics of SMCFN were studied using Fourier transform infrared, scanning electron microscopy, and X-ray diffraction. Acid Blue 92, Direct Green 6, Direct Red 23, and Direct Red 80 were used as model compounds. The effect of operational parameters (surfactant concentration, adsorbent dosage, dye concentration, and pH) on dye removal was evaluated. Response surface methodology (RSM) was used for the analysis of the dye removal data. The experimental checking in these optimal conditions confirms good agreements with RSM results. The results showed that the SMCFN being a magnetic adsorbent might be a suitable alternative to remove dyes from colored aqueous solutions.  相似文献   

7.
Size, morphology and chemical composition of individual aerosol particles collected in a nickel refinery were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis (EDX). The phase composition was determined by selected area electron diffraction and EDX in a transmission electron microscope. Most particles are heterogeneous on a nanometer scale and consist of various phases. Nickel phases observed in the roasting and anode casting departments include metallic nickel, bunsenite (NiO), trevorite (Ni,Cu)Fe2O4, heazlewoodite Ni3S2, godlevskite (Ni,Cu)9S8, orthorhombic NiSO4 and an amorphous Ni,Cu.Al,Pb sulfate of variable composition. Additional phases encountered include corundum (Al2O3), murdochite (PbCu6O8), hexagonal Na2SO4, anhydrite (CaSO4), graphite (C) and amorphous carbon. The implications of the occurrence of the different Ni phases and their nanometer size for the study of adverse health effects are explored.  相似文献   

8.
Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of ΔG indicated the spontaneous nature of the adsorption process.  相似文献   

9.
This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.  相似文献   

10.
Soils are complex mixtures of organic, inorganic materials, and metal compounds from anthropogenic sources. In order to identify the pollution sources, their magnitude and development, several X-ray analytical methods were applied in this study. The concentrations of 16 elements were determined in all the soil samples using energy dispersive X-ray fluorescence spectrometry. Soils of unknown origin were observed by scanning electron microscopy equipped with a Si(Li) X-ray detector using Monte Carlo simulation approach. The mineralogical analyses were carried out using X-ray diffraction spectrometry. Due to the correlations between heavy metals and oxide compounds, the samples were analyzed also by electron probe microanalyzer (EPMA) in order to have information about their oxide contents. On the other hand, soil pH and salinity levels were identified owing to their influence between heavy metal and soil-surface chemistry. Moreover, the geoaccumulation index (I geo) enables the assessment of contamination by comparing current and pre-industrial concentrations.  相似文献   

11.
The size, morphology and chemical composition of 8405 particles on moss surfaces (Hylocomium splendens) was investigated by scanning electron microscopy and energy-dispersive X-ray microanalysis. Two moss samples from three locations in Southern Norway (Alg?rd, Birkeland, Neslandsvatn) and two sampling years (1977 and 2005) each were selected leading to a total of 12 samples investigated. At all three locations, particle deposition decreased substantially with time. The major particle groups encountered include silicates, iron-rich silicates, metal oxides/hydroxides, iron oxides/hydroxides, carbonates, carbon-rich particles, silicate fly ashes, iron-rich silicate fly ashes, and iron oxide fly ashes. Between 1977 and 2005, the relative number abundance of the three fly ash groups decreased substantially from approximately 30-60% to 10-18% for the small particles (equivalent projected area diameter <1 microm), and from 10-35% to 2-9% for large particles with diameters ≥1 microm. This decrease of fly ash particles with time was overlooked in previous papers on atmospheric input of pollutants into ecosystems in Southern Norway. In general, the presence of fly ash particles is ignored in most source apportionment studies based on bulk chemical analysis. Consequently, the geogenic component (crustal component) derived from principal component analysis is overestimated systematically, as it has a similar chemical composition as the fly ash particles. The high abundance of fly ashes demonstrates the need to complement source apportionment based on bulk chemistry by scanning electron microscopy in order to avoid misclassification of this important anthropogenic aerosol component.  相似文献   

12.
The morphology, microstructure, and chemical composition of a variety of particles emitted from coal-fired power plants, steel plants, and vehicle exhausts, which are possible sources of particulate matter (PM) in the atmosphere, were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and compared with particle samples collected from urban atmosphere to identify the best footprint or the suitable indicator relating the existence of studied particles and their possible emitters by the morphology, microstructure, and chemical composition of the particles. The investigation indicated that the particles from these three sources are different in morphology, microstructure, and chemical composition. Sphere aggregates were generally the most abundant components, with silicon and aluminum as major elements. The urban air particulate contained particles similar to those observed in the power plant, steel plant, and vehicle exhaust samples suggesting that all three sources are contributing to the pollution in the city.  相似文献   

13.
Aerosol particles with aerodynamic diameters between 0.18 and 10 microm were collected in the workroom air of two aluminium smelter potrooms with different production processes (Soderberg and Prebake processes). Size, morphology and chemical composition of more than 2000 individual particles were determined by high resolution scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on chemical composition and morphology, particles were classified into different groups. Particle groups with a relative abundance above 1%(by number) include aluminium oxides, cryolite, aluminium oxides-cryolite mixtures, soot, silicates and sea salt. In both production halls, mixtures of aluminium oxides and cryolite are the dominant particle group. Many particles have fluoride-containing surface coatings or show agglomerations of nanometer-sized fluoride-containing particles on their surface. The phase composition of approximately 100 particles was studied by transmission electron microscopy. According to selected area electron diffraction, sodium beta-alumina (NaAl(11)O(17)) is the dominant aluminium oxide and cryolite (Na(3)AlF(6)) the only sodium aluminium fluoride present. Implications of our findings for assessment of adverse health effects are discussed.  相似文献   

14.
Chemical and mineralogical characterization of sediments collected from seven different locations along Asa River in Ilorin, Nigeria have been carried out. The total concentration of Mn, Cr, Fe, Zn and Cu were monitored using Total Reflection X-ray Fluorescence (TXRF). The range of concentration of these metals were: Mn (179.9–469.4, Fe (1998.4–4420.4) Cr (3.0–11.3), Zn (26.6–147.6), Cu (1.9-13.3) mg kg−1. The mineralogical composition was determined using X-ray diffraction (XRD) method and this was complemented with the Infrared Spectroscopy. It was found that the sediments of Asa River had predominantly quartz, and goethite was present in five of the seven locations. Chromite (FeCr3O4) and pyrite (FeS) were also identified at some locations along the River. Higher enrichment factors were calculated for Zn, Cr, Mn, and Fe in the sediment indicating anthropogenic source of contamination. Pyrite was prominent at a location receiving effluent from a detergent industry and near a refuse dumpsite.  相似文献   

15.
The development of 3rd generation synchrotron radiation sources like European Synchrotron Radiation Facility (ESRF) in parallel with recent advances in the technology of X-ray microfocusing elements like Kirkpatrick-Baez (KB) mirrors, diffractive (Fresnel zone plates, FZP) and refractive (compound refractive lenses, CRL) optics, makes it possible to use X-ray microscopy techniques with high energy X-rays (energy superior to 4 keV). Spectroscopy, imaging, tomography and diffraction studies of samples with hard X-rays at micrometre and sub-micrometre spatial resolutions are now possible. The concept of combining these techniques as a high-energy microscopy has been proposed and successfully realized at the ESRF beamlines. Therefore a short summary of X-ray microscopy techniques is presented first. The main emphasis will be put on those methods which aim to produce sub-micron and nanometre resolution. These methods fall into three broad categories: reflective, refractive and diffractive optics. The basic principles and recent achievements will be discussed for all optical devices. Recent applications of synchrotron based microanalytical techniques to characterise radioactive fuel particles (UO(2)) released from the Chernobyl reactor are reported.  相似文献   

16.
上海城市污泥成分特性及分析方法研究   总被引:1,自引:0,他引:1  
采用扫描电镜、X射线衍射仪、能量色散X荧光分析仪、原子吸收光谱等现代分析技术对上海市某污水处理厂的污泥中复杂的化合物的形貌及其中无机化合物的物种进行了综合分析,并对其中痕量重金属的分子存在状态进行分析和评价。  相似文献   

17.
The number concentration and size distribution of ultrafine particles in a S?derberg and a prebake potroom of an aluminium primary smelter have been measured using a scanning mobility particle spectrometer. The particle morphology was studied by transmission electron microscopy (TEM). The study shows the existence of elevated number concentrations of ultrafine particles in both potrooms. The main source of these particles is likely to be the process of anode changing. The ultrafine particles were measured directly at the source but could also be identified as episodes of high number concentrations in the general background air. Unlike the larger particles belonging to the 50-100 nm mode, the nanoparticle mode could not be detected in the TEM indicating that they may not be stable under the applied sampling conditions and/or the high vacuum in the instrument.  相似文献   

18.
This paper provides a comprehensive characterization of mineral waste such as fly ash, bottom ash, slag and construction demolition (C&D) collected from four different thermal power plants, three steel plants and three C&D waste generation sites in India. To determine utilisation potential and environmental concerns, as received fly ash, bottom ash, slag and C&D waste were analysed for physico-chemical, mineralogical and morphological properties. The physico-chemical properties analysed include pH, moisture content, acid insoluble residue, loss on ignition(LOI), carbon content, fineness, chloride content, sulphate content, reactive silica content, XRF and heavy metal analysis. Morphological and mineralogical characteristics were investigated using scanning electron microscopy–energy dispersive X-ray. Particle size distribution was obtained using particle size analyser. The material analysed has different compositions and were selected with a view to determine their suitability for different applications in cement and concrete industry and for further research studies.  相似文献   

19.
The present study reports the first analysis of water pollutants in Sri Lankan waters using a suite of biomarkers in Nile tilapia (Oreochromis niloticus) residing in Bolgoda Lake which receives urban, industrial and domestic wastes from multiple sources. The fish were collected from the lake in the dry period (April 2005) and wet periods (September 2005, October 2006) and the levels of biomarkers viz. hepatic ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST), metallothioneins, biliary fluorescent aromatic compounds, brain and muscle cholinesterases (ChE) were compared with those of the laboratory reared control fish and the fish obtained from a less polluted water body, Bathalagoda reservoir (reference site). The results revealed that biomarker levels of the fish collected from the reference site were not significantly different from the controls. Hepatic EROD and GST activities in fish from Bolgoda Lake were induced 4.2-16.6 folds and 1.4-3.3 folds respectively compared with the control fish. Analysis of bile in the lake fish revealed recent uptake of naphthalene, pyrene and benzo(a)pyrene type polycyclic aromatic hydrocarbons (PAHs). The induction of EROD activities in feral fish reflects the exposure of fish to aryl hydrocarbon receptor agonists including PAHs present as pollutants in the Bolgoda Lake. Cholinesterase activity in the fish inhabiting one sampling site of Bolgoda Lake was lower (22-40% inhibition) than the activity measured in the control fish indicating the presence of anticholinesterase pollutants in the area. Hepatic metallothionein levels in the lake fish were higher (1.9-3.2 folds) in comparison to the controls indicating metal exposure. The results support the potential use of these biomarkers in Nile tilapia in assessing pollution in tropical water bodies.  相似文献   

20.
The present study compares the distribution and nature of heavy metals in composts from 12 cities of India, prepared from different types of processed urban solid wastes, namely mixed wastes (MWC), partially segregated wastes (PSWC), and segregated bio-wastes (BWC). Compost samples were physically fractionated by wet sieving, followed by extraction of heavy metals by dilute HCl and NaOH. Bigger particles (>0.5 mm) constituted the major fraction in all three types of composts and had a relatively lower concentration of organic matter and heavy metals, the effect being more pronounced in MWC and PSWC in which a significant portion of the heavy metals was distributed in finer size fractions. Cd, Ni, Pb, and Zn were extracted to a greater extent by acid than by alkali, the difference being greater in MWC, which contained a higher amount of mineral matter. In contrast, Cu and Cr were extracted to a greater extent by dilute alkali, particularly from BWC containing a higher amount of organic matter. Water-soluble heavy metals were generally related to the water-soluble C or total C content as well as to pH, rather than to their total contents. This study concludes that wet sieving with dilute acid can effectively reduce heavy metal load in MWC and PSWC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号