首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Serious problems are faced in several parts of the world due to the presence of high concentration of fluoride in drinking water which causes dental and skeletal fluorosis to humans. Nalgonda district in Andhra Pradesh, India is one such region where high concentration of fluoride is present in groundwater. Since there are no major studies in the recent past, the present study was carried out to understand the present status of groundwater quality in Nalgonda and also to assess the possible causes for high concentration of fluoride in groundwater. Samples from 45 wells were collected once every 2 months and analyzed for fluoride concentration using an ion chromatograph. The fluoride concentration in groundwater of this region ranged from 0.1 to 8.8 mg/l with a mean of 1.3 mg/l. About 52% of the samples collected were suitable for human consumption. However, 18% of the samples were having less than the required limit of 0.6 mg/l, and 30% of the samples possessed high concentration of fluoride, i.e., above 1.5 mg/l. Weathering of rocks and evaporation of groundwater are responsible for high fluoride concentration in groundwater of this area apart from anthropogenic activities including irrigation which accelerates weathering of rocks.  相似文献   

2.
Silurian–Ordovician (S–O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3–Cl–Na–Mg–Ca, water is alkaline, and its Ca2+ content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na?+?Ca) and Cl/(Cl?+?HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S–O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F?=?100–400 mg/kg) and K-bentonites (F?=?2,800–4,500 mg/kg) contributes to the formation of F-rich groundwater.  相似文献   

3.
The study was carried out to access the fluoride, boron, and nitrate concentrations in ground water samples of different villages in Indira Gandhi, Bhakra, and Gang canal catchment area of northwest Rajasthan, India. Rural population, in the study site, is using groundwater for drinking and irrigation purposes, without any quality test of water. All water samples (including canal water) were contaminated with fluoride. Fluoride, boron, and nitrate were observed in the ranges of 0.50–8.50, 0.0–7.73, and 0.0–278.68 mg/l, respectively. Most of the water samples were in the categories of fluoride 1.50 mg/l, of boron 2.0–4.0 mg/l, and of nitrate <?45 mg/l. There was no industrial pollution in the study site; hence, availability of these compounds in groundwater was due to natural reasons and by the use of chemical fertilizers.  相似文献   

4.
This study was carried out to assess the fluoride concentration in groundwater in some villages of northern Rajasthan, India, where groundwater is the main source of drinking water. Water samples collected form deep aquifer based hand-pumps were analysed for fluoride content. Fluoride in presently studied sites was recorded in the ranges of 4.78 and 1.01 mg/l. The average fluoride concentration for this region was recorded 2.82 mg/l. As per the desirable and maximum permissible limit for fluoride in drinking water, determined by WHO or by Bureau of Indian Standards, the groundwater of about 95 of the studied sites is unfit for drinking purposes. Due to the higher fluoride level in drinking water several cases of dental and skeletal fluorosis have appeared at alarming rate in this region. The middle and eastern parts of the Hanumangarh, a northern most district of the state, can be classified as higher risk area for fluorosis; due to relatively high concentrations of fluoride (3-4 mg/l) in groundwater of this region. After evaluating the data of this study it is concluded that there is an instant need to take ameliorative steps in this region to prevent the population from fluorosis.  相似文献   

5.
The aim of this study was to estimate the risk for caries and fluorosis in a desertification area, applying the calcium/fluoride concentration ratio of underground water and the quality of water in a selected geographical region. This study was performed in the municipality of São João do Rio do Peixe, located in the tropical semiarid lands of Brazil. A total of 111 groundwater samples were collected. Fluoride concentration varied from 0.11 to 9.33 mg/L. Thirty percent of all samples analyzed showed values above 1.5 mg/L, while 64 % were above the ideal limit of 0.7 mg/L. Mean calcium concentration was 47.6 mg/L, and 14.4 % of all samples presented values above the WHO acceptable limits. The proportional value of calcium/fluoride in water showed that only 12 % of the samples were suitable for dental caries prevention with minimal risk for dental fluorosis. Mapping of the fluoride distribution indicated that approximately 2,465 people could be affected by dental fluorosis and 1,057 people might be affected by skeletal fluorosis. It can be concluded that, in addition to fluoride, many water parameters were not suitable for the drinking water. Mapping out calcium/fluoride ratio may indicate areas of water suitability for caries control, whereas the fluoride concentration solely can indicate the areas with the risk for fluorosis. This approach can be relevant for health authorities for identifying communities where dental caries or dental fluorosis is prevalent.  相似文献   

6.
India is among the 23 nations around the globe where health problems occur due to excess ingestion of fluoride (>1.5 mg/l) by drinking water. In Rajasthan, 18 out of 32 districts are fluorotic and 11 million of the populations are at risk. An exploratory qualitative survey was conducted to describe perception of the community regarding fluoride and related health problems in Central Rajasthan. A study on distribution and health hazards by fluoride contaminate in groundwater was performed in 1,030 villages of Bhilwara district of Central Rajasthan. One thousand thirty water samples were collected and analyzed for fluoride concentration. Fluoride concentration in these villages varies from 0.2 to 13.0 mg/l. Seven hundred fifty-six (73.4%) villages have fluoride concentration above 1.0 mg/l. Sixty (5.83%) villages have fluoride concentration above 5.0 mg/l with maximum numbers (24, 19.5%) from Shahpura tehsil. A detailed fluorosis study was carried out in 41 villages out of 60 villages having fluoride above 5.0 mg/l in the study age, sex, and occupation data were also collected. Four thousand, two hundred fifty-two individuals above 5 years age were examined for the evidence of dental fluorosis, while 1998 individuals above 21 years were examined for the evidence of skeletal fluorosis. The overall prevalence of dental and skeletal fluorosis was found to be 3,270/4,252 (76.9%) and 949/1,998 (47.5%), respectively. Maximum of 23.9% (1,016) individuals have mild grade of Dean’s classification. Three hundred seventy-four (8.8%) individuals have severe type of dental fluorosis. The Dean’s Community Fluorosis Index for the studied area in total is 1.62. Maximum CFI 3.0 was recorded from Surajpura of Banera Tehsil. Five hundred sixty-six (28.3%) individuals have Grade I type of skeletal fluorosis while only 0.6% (12) individuals have Grade III skeletal fluorosis. In conclusion, the prevalence and severity of fluorosis increased with increasing fluoride concentration. It was interesting to note that in some villages, the prevalence and severity of fluorosis were highest in subjects belonging to the economically poor community. Similarly, male laborers showed highest prevalence of fluorosis. Prevalence and severity of fluorosis were observed higher in subjects using tobacco, bettle nuts, and alcoholic drinks. In contrast, subjects using citrus fruits and having good nutritional status showed low prevalence.  相似文献   

7.
Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized in the study area. The range of As concentration in the groundwater varies from 10 to 440 μg/l with mean concentration 210 μg/l. The groundwaters are characterized by high dissolved Fe, Mn, and HCO3 ? and low concentrations of NO3 ? and SO4 2? indicating the reduced conditions prevailing in the groundwater. In order to understand the actual mobilization processes in the area, six core drilling surrounding the two target tube wells (T1 and T2) with high As concentration (three drill-cores surrounds each tube well closely) was done. The sediment was analyzed its chemical, mineralogical, and elemental compositions. A selective sequential extraction suggested that most of the As in the sediment is bound to Fe oxides fractions (32 to 50 %) and the competition for adsorption site by anions (PO4 3?) also accounts to significant fractions of the total arsenic extracted. High variability in the extraction as well as properties of the sediment was observed due to the heterogeneity of the sediment samples with different chemical properties. The SEM and EDX results indicate the presence of Fe, Mn coating along with As for most of the sample, and the presence of As associated minerals were calculated using PHREEQC. The mobilization of As into the groundwater was anticipated to be largely controlled by the reductive dissolution of Fe oxides and partly by the competitive anions viz. PO4 3?.  相似文献   

8.
In order to investigate the distribution of the total petroleum hydrocarbons (TPH) in groundwater and soil, a total of 71 groundwater samples (26 unconfined groundwater samples, 37 confined groundwater samples, and 8 deeper confined groundwater samples) and 80 soil samples were collected in the Songyuan oilfield, Northeast China, and the vertical variation and spatial variability of TPH in groundwater and soil were assessed. For the groundwater from the unconfined aquifer, petroleum hydrocarbons were not detected in three samples, and for the other 23 samples, concentrations were in the range 0.01–1.74 mg/l. In the groundwater from the confined aquifer, petroleum hydrocarbons were not detected in two samples, and in the other 35 samples, the concentrations were 0.04–0.82 mg/l. The TPH concentration in unconfined aquifer may be influenced by polluted surface water and polluted soil; for confined aquifer, the injection wells leakage and left open hole wells may be mainly responsible for the pollution. For soils, the concentrations of TPH varied with sampling depth and were 0–15 cm (average concentration, 0.63 mg/g), >40–55 cm (average concentration, 0.36 mg/g), >100–115 cm (average concentration, 0.29 mg/g), and >500–515 cm (average concentration, 0.26 mg/g). The results showed that oil spillage and losses were possibly the main sources of TPH in soil. The consequences concluded here suggested that counter measures such as remediation and long-term monitoring should be commenced in the near future, and effective measures should be taken to assure that the oilfields area would not be a threat to human health.  相似文献   

9.
A study was carried out in the Island and mainland regions of Ramanathapuram District to characterize the physico-chemical characteristics of 87 groundwater samples in Island and 112 groundwater samples in mainland which include pH, EC, TDS, salinity, total alkalinity, calcium hardness, magnesium hardness, total hardness, chloride and fluoride. Heavy inorganic load in majority of the groundwater samples has been estimated due to the salinity, TDS, TH and chloride beyond the threshold level which substantiates the percolation of sea water into the freshwater confined zones. Although the groundwater sources are available in plenty, the scarcity of potable water is most prevalent in this coastal area. The Water Quality Index (WQI) and Langeleir Saturation Index (LSI) have also been calculated to know the potable and corrosive/incrusting nature of the water samples. The statistical tools such as principal component analysis, box plots and correlation matrix have also been used to explain the influence of different physico-chemical parameters with respect to one another among the groundwater samples. The percentage of groundwater samples in mainland was more than that in Island with respect to the acceptable limit of WHO drinking standard, especially in TDS, CH, TH and chloride but the converse is observed in the case of fluoride. About 8 % of the mainland aquifers and 42 % of Island aquifers were identified to have fluoride greater than 1.5 mg/l. The signature of salt-water intrusion is observed from the ratio of Cl/CO 3 2? ?+?HCO3 and TA/TH. A proper management plan to cater potable water to the immediate needs of the people is to be envisaged.  相似文献   

10.
The accumulation of fluoride (F) in groundwater is a common phenomenon in India and worldwide. Its location can be identified through a direct hydrochemical analysis, which was carried out in Kurmapalli watershed (located 60 km SE of Hyderabad city), Nalgonda district, Andhra Pradesh, India affected by F contamination. The results of the hydrochemical analysis showed that F varied from 0.71 to 19.01 mg/l and its concentration exceeded the permissible limit (i.e., 1.5 mg/l) in 78% of the total 32 samples analyzed. The highest F value (19.01 mg/l) was found near Madnapur village, which is located in the central part of the watershed. Resistivity and induced polarization (IP) surveys were also carried out to reveal the zones where elevated F-contaminated groundwater exists. The objective of this paper was to highlight the utility of resistivity and IP surveys, using hydrochemical constituents as constraint, for the successful delineation of such contaminated/polluted groundwater zones in the granite area.  相似文献   

11.
In May 2008, an accidental damage of a Nigerian National Petroleum Corporation (NNPC) pipeline occurred in Ijegun area of Lagos, Nigeria, resulting in oil spillage and consequent contamination of the environment. The residual concentration of the total hydrocarbon (THC) and benzene, toluene, ethylbenzene, and xylene (BTEX) in the groundwater and soil was therefore investigated between March 2009 and July 2010. Results showed elevated THC mean levels in groundwater which were above the World Health Organization maximum admissible value of 0.1 mg/l. THC values as high as 757.97 mg/l in groundwater and 402.52 mg/l in soil were observed in March 2009. Pronounced seasonal variation in the concentration of THC in groundwater and soil samples show that there was significant (P?<?0.05) difference in the measured concentration of THC between each season (dry and wet), with the highest being in the dry season and between the years 2009 and 2010. Significant hydrocarbon contamination, 500 m beyond the explosion site and 25 months after the incident, was observed revealing the extent of the spillage of petroleum products. The highest concentrations of 16.65 μg/l (benzene), 2.08 μg/l (toluene), and 4864.79 μg/l (xylene) were found in stations within the 100 m buffer zone. Most of the samples of groundwater taken were above the target value of 0.2 μg/l set for BTEX compounds by the Environmental Guidelines and Standards for Petroleum Industry in Nigeria. The level of hydrocarbon in the impacted area calls for concern and remediation of the area is urgently needed to reduce further negative impact on the ecosystem.  相似文献   

12.
A study was undertaken to assess the quality of groundwaters in the Kathmandu Valley, Nepal. The groundwater samples were randomly collected from shallow well, tube well, and deep-tube wells located at different places of Kathmandu, Lalitpur, and Bhaktapur districts in the Kathmandu valley. Physical, chemical, and microbiological parameters of the samples were evaluated to estimate the groundwater quality for drinking water. It was found that the groundwater in the valley is vulnerable to drink due to presence of iron and coliform bacteria. Iron was estimated to be much higher then the acceptable limit of World Health Organization (WHO) drinking-water quality guidelines (1.9 mg/L). Total coliform bacteria enumerated in groundwaters significantly exceeded the drinking-water quality standard and observed maximum coliform (267 CFU/100 mL) in shallow wells. The electrical conductivity and turbidity were found to be 875 ??S/cm and 55 NTU, respectively, which are above the WHO recommendations for drinking water guidelines. However, pH value was measured within the acceptable limit. Arsenic, chloride, fluoride, and hardness concentrations were found to be in agreement with the recommendations of WHO drinking-water quality guidelines.  相似文献   

13.
The present investigation reports the assessment of hydrochemical/geochemical processes controlling the concentration of fluoride in groundwater of a village in India (Boden block, Orissa). Boden block is one of the severely affected fluoride-contaminated areas in the state of Orissa (India). The sampling and subsequent analysis of water samples of the study area was carried out following standard prescribed methods. The results of the analysis indicate that 36.60% groundwater F concentration exceeds the limit prescribed by the World Health Organization for drinking water. The rock interaction with groundwater containing high concentration of HCO3 and Na+ at a higher pH value of the medium could be one of the important reasons for the release of F from the aquatic matrix into groundwater. Geochemical classification of groundwater based on Chadha rectangular diagram shows that most of the groundwater samples having fluoride concentration more than 1.5 mg L−1 belongs to the Na-K-HCO3 type. The saturation index values evaluated for the groundwater of the study area indicated that it is oversaturated with respect to calcite, whereas the same is undersaturated with respect to fluorite content. The deficiency of calcium ion concentration in the groundwater from calcite precipitation favors fluorite dissolution leading to excess of fluoride concentration. The risk index was calculated as a function of fluoride level in drinking water and morbidity of fluorosis categorizes high risk for villages of Amera and Karlakote panchayat of Boden block.  相似文献   

14.
Endemic fluorosis was detected in 31 villages in the Dhar district of Madhya Pradesh, Central India. Out of the 109 drinking water sources that were analyzed, about 67 % were found to contain high concentration of fluoride above the permissible level of 1.0 mg/l. Dental fluorosis among the primary school children in the age between 8 and 15 served as primary indicator for fluoride intoxication among the children. Urinary fluoride levels among the adults were found to be correlated with drinking water fluoride in 10 villages affected by fluoride. Intervention in the form of alternate safe water supply in five villages showed significant reduction in the urinary fluoride concentration when compared to the control village. Urinary fluoride serves as an excellent marker for assessing the effectiveness of intervention program in the fluoride-affected villages.  相似文献   

15.
A study was undertaken to estimate fluoride content in thegroundwater in certain parts of rural Eritrea, North-East Africa,along the River Anseba. Standard procedure was adopted for fluoride detection. Results indicate elevated concentration offluoride in groundwater. The highest concentration was found tobe 3.73 mg L-1, well above the safety level for consumption.Geological basis for the high concentration of high fluoride hasbeen established; it is presumed to be the pegmatite intrusion hosted by a granitic batholith. Extensive dental fluorosis has been observed in the population exposed to drinking water of highfluoride content.  相似文献   

16.
The quality of the water in a uranium-ore-mining area located in Caldas (Minas Gerais State, Brazil) and in a reservoir (Antas reservoir) that receives the neutralized acid solution leaching from the waste heaps generated by uranium mining was investigated. The samples were collected during four periods (October 2008, January, April and July 2009) from six sampling stations. Physical and chemical analyses were performed on the water samples, and the data obtained were compared with those of the Brazilian Environmental Standards and WHO standard. The water samples obtained from waste rock piles showed high uranium concentrations (5.62 mg L?1), high manganese values (75 mg L?1) and low average pH values (3.4). The evaluation of the water quality at the point considered the limit between the Ore Treatment Unit of the Brazilian Nuclear Industries and the environment (Consulta Creek) indicated contamination by fluoride, manganese, uranium and zinc. The Antas reservoir showed seasonal variations in water quality, with mean concentrations for fluoride (0.50 mg L?1), sulfate (16 mg L?1) and hardness (20 mg L?1) which were low in January, evidencing the effect of rainwater flowing into the system. The concentrations for fluoride, sulfate and manganese were close or above to the limits established by current legislation at the point where the treated mining effluent was discharged and downstream from this point. This study demonstrated that the effluent discharged by the UTM affected the quality of the water in the Antas reservoir, and thus the treatments currently used for effluent need to be reviewed.  相似文献   

17.
This study analyzes the concentrations and health risks of fluoride in 249 drinking water samples collected from different regions of Anhui Province in China. Results indicated that fluoride content in drinking water ranged from 0.12 to 1.94 mg L?1 (mean?=?0.57 mg L?1) in the following order: Huaibei plain region > Jianghuai hill region ≈ Dabieshan mountainous region > plain along the Yangtze River region > southern Anhui mountainous region. The fluoride contents were less than 0.50 mg L?1 in 66.66 % of the drinking water samples, 0.51–1.0 mg L?1 in 23.29 %, and higher than 1.0 mg L?1 in 12.04 %. The fluoride levels in some samples were lower than the recommended values for controlling dental caries (0.50–1.0 mg L?1). The total fluoride intake from drinking water was between 0.14 and 2.33 mg per day in different regions of the province, supposing an individual consumes 1.2 L of water per day. Therefore, measures should be taken to increase fluoride intake in the Jianghuai hill region, Dabieshan mountainous region, plain along the Yangtze River, and southern Anhui mountainous region to control dental caries. On the other hand, the fluoride levels must be reduced in the Huaibei plain region to decrease endemic fluorosis. The results serve as crucial guidelines for managing fluoride safety in drinking water and controlling endemic fluorosis in different regions of Anhui Province.  相似文献   

18.
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, CO3 ?, HCO3 ?, Cl?, SO4 2?, and NO3 ?. Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902?μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 ? concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 ? concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper’s classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca2+ and Mg2+ over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.  相似文献   

19.
A total of 60 drinking water samples collected from Erode district, Tamilnadu, India were analysed for fluoride contamination, besides water quality parameters such as pH, electrical conductivity, total dissolved solids, total alkalinity, total hardness, fluoride, bicarbonates, calcium, magnesium, nitrate, sulphate, phosphate, sodium and potassium. The results obtained were found to exceed the permissible limits. The concentration of fluoride in the water samples ranged between 0.5 and 8.2 mg/l and revealed that 80% of the water samples contain fluoride above the maximum permissible limit. Similarly, the concentrations of nitrate, hardness, calcium and magnesium in some samples were also more than the permissible level. Pearson’s correlation coefficient among the parameters showed a positive correlation of fluoride with total hardness and calcium. It is inferred from the study that these water sources can be used for potable purpose only after prior treatment.  相似文献   

20.
The study comprised suitability assessment of groundwater for drinking, irrigation, and industrial use. A total of 34 groundwater samples were collected from Rewari town and its perimeter from the land chiefly used for agriculture. Physico-chemical characterization of the samples revealed that groundwater from most of the sources was not fit for drinking owing to a high concentration of calcium, magnesium, hardness and fluoride. Suitability for irrigation, too, was low since most of the sources had high value of sodium adsorption ratio (SAR), residual sodium carbonate (RSC), soluble sodium percentage (SSP) and magnesium hazard which can render salinity and alkali hazard to soils on long term use in irrigation. No source of water was found to be suitable for industrial application since it had high concentration of calcium carbonate which can precipitate very easily. It was observed that sodium, sulphate, and chloride were the chief ions present in water and based on the abundance of ions and their correlation type, most of the groundwater samples are of sodium sulphate and/or sodium chloride type. The high concentration of the chemical constituents is attributed to the lithologic composition of the area. It was observed that the water of deep meteoric percolation type was of sodium sulphate type and the shallow of sodium chloride type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号