首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was conducted during November, 2005–October, 2006 to evaluate the surface water quality of river Ganga around Kolkata. The samples were analyzed for a number of physico-chemical parameters using standard laboratory procedures and giving prime thrust to determine the heavy metal concentrations (Fe, Mn, Cu, Zn, Pb, Cd, Cr, and Ni) of surface water at four different locations of the river Ganga around Kolkata from two points (middle of the river stream and a discharge point) at each location. Out of 96 samples analyzed, Fe, Mn, Cu, Zn, and Ni were detected in 71, 47, 38, 60, and 45 samples in the concentrations ranging from 0.013 to 5.49, 0.022 to 1.78, 0.003 to 0.033, 0.005 to 0.293, and 0.045 to 0.24 mg L???1, respectively. Cd and Pb were detected in six and 21 samples in the range of 0.005 to 0.006 and 0.05 to 0.53 mg L???1, respectively. But Cr was not detected in any of the samples analyzed. The metals exhibited no significant variation with respect to sampling locations as well as discharge points. However, the concentration of those metals varied with season, being higher in rainy and lower in winter season.  相似文献   

2.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

3.
Some wetland plant species are adapted to growing in the areas of higher metal concentrations. Use of such vegetation in remediation of soil and water contaminated with heavy metals is a promising cost-effective alternative to the more established treatment methods. Throughout the year, composite industrial effluents bringing various kinds of heavy metals contaminate our study site, the East Calcutta Wetlands, a Ramsar site at the eastern fringe of Kolkata city (formerly Calcutta), India. In the present study, possible measures for remediation of contaminated soil and water (with elements namely, Ca, Cr, Cu, Pb, Zn, Mn, and Fe) of the ecosystem had been investigated. Ten common regional wetland plant species were selected to study their efficiency and diversity in metal uptake and accumulation. Results showed that Bermuda grass (Cynodon dactylon) had the highest total Cr concentration (6,601 ± 33 mg kg???1 dw). The extent of accumulation of various elements in ten common wetland plants of the study sites was: Pb (4.4?C57 mg kg???1 dw), Cu (6.2?C39 mg kg???1 dw), Zn (59?C364 mg kg???1 dw), Mn (87?C376 mg kg???1 dw), Fe (188?C8,625 mg kg???1 dw), Ca (969?C3,756 mg kg???1 dw), and Cr (27?C660 mg kg???1 dw) indicating an uptake gradient of elements by plants as Ca>Fe>Mn>Cr>Zn>Cu>Pb. The present study indicates the importance of identification and efficiency of metal uptake and accumulation capabilities by plants in relation to their applications in remediation of a contaminated East Calcutta Wetland ecosystem.  相似文献   

4.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

5.
Cd, Co, Cr, Cu, Mn, Ni, Zn, and Pb were measured in feather samples of adult, subadult, and juvenile of Larus dominicanus, sampled in the Florianólis, SC, in the south of Brazil in December 2005, by flame atomic absorption spectrophotometry. The average of the distribution of Cd concentration in adult feathers (0.072 μg g???1) was significantly different than that found in juvenile feathers (0.021 μg g???1). Cu concentration averages were not significantly different between adults (13.30 μg g???1), subadults (9.67 μg g???1), and juveniles (13.76 μg g???1). For adults and juveniles there was significant difference in feather concentrations for Cd, Co, Cr, Ni, and Pb. The distribution of Mn concentration averages in feathers differs between adults (11.36 μg g???1) and juveniles (1.184 μg g???1). Ni concentration averages of adults (5.92 μg g???1) were significantly higher than those of juveniles (2.23 μg g???1). For Pb, concentration averages were significantly higher in adults (7.53 μg g???1) than in juveniles (1.47 μg g???1). The concentration of Co and Cr in juvenile and subadults are statistically different when compared with the adults. In the present study, levels of Cd, Co, Cr, Mn, Ni, Zn, and Pb increased with age. The concentrations of essential trace elements in L. dominicanus were generally comparable to values reported in other studies. With non-essential metals (Cd, Pb, and Ni), in our study, L. dominicanus had lower values than those reported for their northern Atlantic counterparts.  相似文献   

6.
Concentrations of Cd, Cu, Fe, Pb, and Zn were measured in the samples of street dust and surface roadside soil before Jordan switched to unleaded fuel usage. The samples were collected from Petra, the most tourist-attractive site in Jordan. The samples were analyzed for heavy metals by atomic absorption spectrophotometry. Our results show that the distribution of metals in the soil samples is affected by wind direction in the investigated area. The highest level of metals was found in the eastern parts of the roads due to the westerly-dominant wind in the studied area. The contamination levels of metals decrease as the distance from the edge of the road increases. In the roadside soil samples, the means for the concentrations of the metals at 1 m from the east side of the main road are 1.0, 19.1, 3791.4, 177.0, and 129.0 mg kg?1 for Cd, Cu, Fe, Pb, and Zn, respectively. In the samples of street dust, the means of the concentrations of the metals in the investigated area are 9.7, 11.8, 4694.4, 31.6, and 24.8 mg kg?1 for Cd, Cu, Fe, Pb, and Zn, respectively. In conclusion, the lithogenic origins (traffic emissions) are responsible for the diffusion of these metals in the studied region.  相似文献   

7.
Six stations in the lower reach region of Changjiang River within Baguazhou Island, Nanjing reach were chosen to investigate the toxic metals pollution characteristic in suspended particle material (SPM). SPM concentration, as well as reflectance spectroscopy characteristic, toxic metal concentrations, and lead isotopes of suspended particle material were studied. SPM concentrations were obtained from fluvial cross-sectional sampling near the surface (20 cm) and the study presents the cross-sectional averages. SPM concentrations varied around 170?C300 mg L???1. Reflectance spectroscopy measurements differed from each other over each cross-section but no common pattern characterizing the cross-sectional behavior of the measurements was observed. The metal concentrations in the SPM decreased in the sequence: Mn > Zn > Cu > Cr > Pb > Cd. The result of lead isotopes analysis proved that lead isotopes composition in SPM are mainly produced by natural contributions and influenced by anthropogenic activity at the same time.  相似文献   

8.
Dispersive liquid?Cliquid microextraction followed by inductively coupled plasma-optical emission spectrometry has been investigated for determination of Cd(II) ions in water samples. Ammonium pyrrolidine dithiocarbamate was used as chelating agent. Several factors influencing the microextraction efficiency of Cd (II) ions such as extracting and dispersing solvent type and their volumes, pH, sample volume, and salting effect were optimized. The optimization was performed both via one variable at a time, and central composite design methods and the optimum conditions were selected. Both optimization methods showed nearly the same results: sample size 5 mL; dispersive solvent ethanol; dispersive solvent volume 2 mL; extracting solvent chloroform; extracting solvent volume 200  $\upmu $ L; pH and salt amount do not affect significantly the microextraction efficiency. The limits of detection and quantification were 0.8 and 2.5 ng L???1, respectively. The relative standard deviation for five replicate measurements of 0.50 mg L???1 of Cd (II) was 4.4%. The recoveries for the spiked real samples from tap, mineral, river, dam, and sea waters samples ranged from 92.2% to 104.5%.  相似文献   

9.
In order to characterize environmental vanadium distribution, mobility, and bioaccumulation, a total of 55 soil samples and 36 plant samples were collected in four typical land-use districts in Panzhihua region, Southwestern China. Soil samples were analyzed with the modified Community Bureau of Reference (BCR) sequential extraction procedure, and the content of vanadium in soil and plant was determined by ICP-AES. The total content of vanadium was 208.1?C938.4 mg kg???1 in smelting area, 111.6?C591.2 mg kg???1 in mining area, 94.0?C183.6 mg kg???1 in urban park, and 71.7?C227.2 mg kg???1 in agricultural area, respectively, while the bio-available content of vanadium was characterized that the polluted areas (mining area 18.8?C83.6 mg kg???1, smelting area 41.7?C132.1 mg kg???1) and the unpolluted area (agricultural area 9.8?C26.4 mg kg???1, urban park 9.9?C25.2 mg kg???1). In addition, the contamination degree of vanadium in soil was smelting area > mining area > agricultural area ?? urban park. Moreover, the fraction of vanadium in each sequential extraction characterized that residual fraction > oxidizable fraction > reducible fraction > acid soluble fraction. The bioaccumulation of vanadium from soil to plant was weak to intermediate absorption. Therefore, some countermeasures such as soil monitoring and remediation should be to take in the sooner future, especially in mining and smelting area.  相似文献   

10.
Surface sediments collected from the Lagos Lagoon, Nigeria, and three adjoining rivers were analysed for their physicochemical properties and pseudo-total concentration of the potentially toxic metals (PTM) Cd, Cr, Cu, Pb and Zn. The concentration of the PTM varied seasonally and spatially. Odo-Iyaalaro was observed to be the most polluted river, with highest concentrations of 42.1 mg kg?1, 102 mg kg?1, 185 mg kg?1, 154 mg kg?1 and 1040 mg kg?1 of Cd, Cr, Cu, Pb and Zn, respectively, while Ibeshe River was the least contaminated, apart from a site affected by Cu from the textile industry. Some of the sediments were found to be above the consensus-based probable effect concentrations and Dutch sediment guideline for metals. Overall metal concentrations were similar to those reported for other tropical lagoon and estuarine systems affected by anthropogenic inputs as a result of rapid urbanisation. Due to the large number of samples, principal component analysis was used to examine relationships within the data set. Generally, sediments collected during the dry season were observed to have higher concentration of PTM than those collected during the rainy season. This means that PTM could accumulate over a prolonged period and then be released relatively rapidly, on an annual basis, into tropical lagoon systems.  相似文献   

11.
This study was performed to investigate the metal concentrations in muscle, liver, gonad, and gill of gilthead seabream (Sparus aurata L., 1758), European seabass (Dicentrarchus labrax L., 1758), and keeled mullet (Liza carinata Valenciennes, 1836) from Yelkoma Lagoon, northeastern Mediterranean region. So, the levels of cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead, and zinc in tissues of specimens from the lagoon were determined by inductively coupled plasma optical emission spectrometer. Concentrations of metals in muscles of the examined species ranged from 0.10 to 0.47 mg kg???1 for cadmium, 0.10 to 0.43 mg kg???1 for cobalt, 0.17 to 0.72 mg kg???1 for chromium, 0.62 to 1.03 mg kg???1 for copper, 28.9 to 52.3 mg kg???1 for iron, 0.75 to 0.96 mg kg???1 for manganese, 0.11 to 0.57 mg kg???1 for nickel, 0.19 to 0.47 mg kg???1 for lead, and 6.01 to 13.9 mg kg???1 for zinc, respectively. Additionally, metal concentrations in muscles of fish were assessed for human uses according to provisional tolerable weekly intake and provisional tolerable daily intake.  相似文献   

12.
The Sava River is the biggest tributary to the Danube River. As a part of the 6th FW EU project, Sava River Basin: Sustainable Use, Management and Protection of Resources (SARIB), ecological status of sediments was investigated. In order to assess the geographical distribution in sediment contamination of the Sava River, inorganic and persistent organic pollutants were analyzed in sediments at 20 selected sampling sites along the Sava River from its spring to its outfall into the Danube River. For comparability of data to other river basins the sediment fraction below 63 μm was studied. Due to complexity of the work performed, the results are published separately (“Part I: Selected elements” and “Part II: Persistent organic pollutants”). In the present study, the extent of pollution was estimated by determination of the total element concentrations and by the identification of the most hazardous highly mobile element fractions and anthropogenic inputs of elements to sediments. To assess the mobile metal fraction extraction in 0.11 mol L???1, acetic acid was performed (first step of the Community Bureau of Reference extraction procedure), while anthropogenic inputs of elements were estimated on the basis of normalization to aluminum (Al) concentration. According to the Water Framework Directive, the following elements were investigated in sediments: cadmium (Cd), lead (Pb), nickel (Ni), and mercury (Hg). Furthermore, copper (Cu), zinc (Zn), chromium (Cr), arsenic (As), and phosphorous (P) were determined. The analyses of sediments demonstrated slightly elevated values for Hg, Cr, and Ni in industrially exposed sites (concentrations up to 0.6, 380, and 210 mg kg???1, respectively). However, the latter two elements exist in sparingly soluble forms and therefore do not represent an environmental burden. P concentrations were found in elevated concentrations at agricultural areas and big cities (up to 1,000 mg kg???1).  相似文献   

13.
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n?=?191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg?1, and the background concentration was 0.5 mg kg?1. After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg?1 of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg?1) was higher than in Ultisols (0.3 mg kg?1). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R 2?=?0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.  相似文献   

14.
Nine metals were monitored in the beach sediment in Mumbai from May 2011 to March 2012 to evaluate the spatial and temporal distributions. The average heavy metal concentrations exhibited the following order: Fe > Mn > Cr > Co > Ni > Pb > Zn > Cu > Cd for the four sampling sites. The mean concentrations (± SD) of Fe, Mn, Cr, Co, Ni, Pb, Zn, Cu and Cd were estimated to be 31.15?±?10.02 g kg?1, 535.04?±?76.42, 151.98?±?97.90, 92.76?±?14.18, 67.52?±?11.32, 59.57?±?15.19, 54.65?±?15.01, 32.24?±?8.07 and 18.75?±?1.76 mg kg?1, respectively. The results indicated that the sediments were polluted with Cd, Cr, Co and Pb due to high anthropogenic influences. Spatial variation of metals revealed that most of the metals were high in Dadar beach and low in Aksa beach. Cd was the highest contaminant metal studied with a mean contamination factor of 93.75. The pollution load indices of the studied beaches ranged from 1.63 (Aksa) to 1.91 (Dadar) and indicated that the beach sediments were polluted with heavy metals. The heavy metal contents increased in relation to monsoon, and most of the heavy metals showed significantly high concentrations in November during the post-monsoon. The statistical analysis revealed significant effect of study site on all the metals studied. Further, there was a significant difference on metal accumulation on bimonthly basis in relation to weather pattern in Mumbai beaches.  相似文献   

15.
Pulp and paper mills generate varieties of pollutants depending upon type of the pulping process being used. This paper presents the characteristics of wastewater from South India Paper Mill, Karnataka, India which is using recycled waste paper as a raw material. The raw wastewater consists of 80?C90 mg L???1 suspended solid and 1,010?C1,015 mg L???1 dissolved solid. However, pH varied from 5.5?C6.8. The biochemical oxygen demand and chemical oxygen demand ranged from 200?C210 and 1,120?C1,160 mg L???1, respectively. Aerobic treatment of raw effluent attribute to significant reduction in suspended solid (range between 25 to 30 mg L???1) and total dissolved solid (range between 360 to 390 mg L???1). However, pH, temperature, and electrical conductivity were found superior after treatment. Copper, cadmium, iron, lead, nickel, and zinc were found in less quantity in raw effluent and were almost completely removed after treatment. The dendrogram of the effluent quality parameters clearly indicate that South India Paper Mill does not meet Minimal National Standard set by central Pollution Control Board to discharge in agricultural field.  相似文献   

16.
Quercetin (3,3,4,5,7-pentahydroxyflavone) chemically bonded through pyran rearrangement on modified controlled pore silica glass (QCPSG) with a capacity 0.213 mmol/g was used for solid phase extraction of some toxic metal and metalloid ions. The newly designed QCPSG quantitatively sorbs As(V), Cd(II), Hg(II), and Pb(II) at the pH range 7.5–8.5 after 10 min of stirring. HCl (1 mol L???1) instantaneously elutes all the metal ions. The sorption capacity of the ion collector is 0.42, 0.46, 0.53, and 0.49 mmol g???1 for As(V), Cd(II), Hg(II), and Pb(II), respectively, whereas the preconcentration factor is 200. The effect of NaCl, Na2SO4, NaF, NaBr, Na3PO4, and other interfering salts on the sorption of metal ions (50 μg L???1) was reported. Analytical detection limits of As(V), Cd(II), Hg(II), and Pb(II) were 4.18, 2.44, 15.86, and 25.00 pg mL???1, respectively. QCPSG was used in the separation of the investigated metal ions from some natural water samples collected from diverse origins followed by determination by inductively coupled plasma–mass spectrometry. The data were compared with those obtained by the standard methods of determination using atomic absorption (hydride generation, HGAAS and after solvent extraction with ammonium pyrolidine dithiocarbamate/methyl isobutyl ketone). The suggested solid phase extraction method was found accurate with no random error.  相似文献   

17.
The concentrations of seven heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, and Pb) associated with PM10 and PM2.5 at the crossroads and the background sites have been studied in Zabrze, Poland, during smog episodes. Although the background level was unusually elevated due to both high particulate emission from the industrial and municipal sources and smog favorable meteorological conditions, significant increase of the concentration of PM2.5 and PM10 as well as associated heavy metals in the roadside air compared to the urban background has been documented. The average daily difference between the roadside and corresponding urban background aerosol concentration was equal to 39.5 μg m???3 for PM10 and 41.2 μg m???3 for PM2.5. The highest levels of the studied metals in Zabrze appeared for iron carried by PM10 particles: 1,706 (background) and 28,557 ng m???3 (crossroads). The lowest concentration level (in PM10) has been found for cadmium: 7 and 77 ng m???3 in the background and crossroads site, respectively. Also the concentrations of heavy metals carried by the fine particles (PM2.5) were very high in Zabrze during the smog episodes. Concentrations of all studied metals associated with PM10 increased at the roadside compared to the background about ten times (one order) while metals contained in PM2.5 showed two to three times elevated concentrations (except Fe—five times and Cr—no increase).  相似文献   

18.
The Iron Quadrangle has been one of the most important gold production regions in Brazil since the end of the seventeenth century. There, arsenic occurs in close association with sulfide-rich auriferous rocks. The most abundant sulfide minerals are pyrite and arsenopyrite, yet trace metal sulfides occur in subordinate phases as well. Historical mining activities have been responsible for the release of As and trace metals to both aquatic and terrestrial environments close to mining sites in the region. Therefore, this study was aimed to evaluate the distribution and mobility of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn in streams in the southeast portion of the Iron Quadrangle between the municipalities of Ouro Preto and Mariana, the oldest Brazilian Au mining province. Total concentrations of some trace metals and arsenic in water were determined. The four-stage sequential extraction procedure proposed by the commission of the European Communities Bureau of Reference (BCR) was used to investigate the distribution of these elements in stream sediments. Arsenic concentration in water was >10 ??g L???1 (maximum limit permitted by Brazilian environmental regulations for water destined for human consumption) at all sampling sites, varying between 36.7 and 68.3 ??g L???1. Sequential extraction in sediments showed high concentrations of As and trace metals associated with easily mobilized fractions.  相似文献   

19.
The study determined the influence and relative importance of water chemistry parameters (pH, alkalinity, hardness) on the acute toxicity of silver to the green mussel Perna viridis. A preliminary bioassay revealed that 4 mg L???1 of silver caused 50% mortality (LC50) in 96 h for mussels placed in seawater with pH 8.5, hardness 1,872 mg L???1, and alkalinity 172 mg L???1. Mortality of mussels increased with decreasing pH and increasing hardness and alkalinity variables. In contrast the mortality decreased with increasing pH and decreasing hardness and alkalinity values. The water chemistry also affected the concentration of sliver in experimental seawater and bioaccumulation of silver in mussels. The results revealed that the chemical properties of seawater must be considered while conducting toxicity tests with metals like silver. The possible explanations for the influence of water chemistry on silver toxicity to P. viridis are discussed.  相似文献   

20.
Large quantities of untreated industrial and domestic wastewater are discharged from the city of Hanoi into urban rivers. Sediment samples from three sites in the To Lich River in Hanoi were assessed with respect to the concentrations and potential mobility of cadmium (Cd), nickel (Ni) and lead (Pb). Due to very high Cd concentrations up to 700 mg kg?1 at one site, the sediment was considered highly unsuitable for any types of land use if dredged and disposed of on land. Chemical sequential extractions of wet and anoxic sediment samples showed that Cd and Pb were largely associated with the redox-sensitive fractions and could thus be mobilised following measures such as resuspension or dredging. To assess the potential mobilisation of heavy metals from the anoxic sediment due to oxidation, the samples were exposed to different oxidants (i.e. atmospheric air and hydrogen peroxide) and afterwards submitted to a leaching test. These experiments showed that although oxidation may increase the equilibrium pore water concentrations of heavy metals in the sediments, other sediment mineral fractions seem to effectively immobilise heavy metals potentially released from the oxidisable fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号