共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Particulate matter suspended in the air has adverse effects onhuman health. Its level of concentration is an important parameter in evaluating the degree of hazard it poses to the atmosphere. Conventional methods used in measuring particulatematter are often filter-based, which indicates some disadvantagesbecause such a base requires labor and time. In this study, to achieve real-time measurements, a new electrical method was developed for measuring PM10 and PM2.5 concentrations. The basicprinciple is to electrically charge particles passing through thePM inlet using a corona charger and measure the currents createdby charged particles to obtain the number concentration of particulate matter. A new type inlet based on the particle cupimpactor configuration was designed and its performance was evaluated. A unipolar diffusion charger was developed and thecharger's efficiency was determined experimentally in terms ofPn, which represents the penetration through the charger,P, times the average charge number acquired by a particle,n, for different particle sizes. The correlation was constructed between the PM10 (or the PM2.5) mass concentrationsand the electrical currents due to particles, which were chargedby the diffusion charger. 相似文献
3.
Fujiwara F Dos Santos M Marrero J Polla G Gómez D Dawidowski L Smichowski P 《Journal of environmental monitoring : JEM》2006,8(9):913-922
A four-step chemical sequential extraction procedure was used to evaluate the distribution of Al, As, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn in airborne particulate matter collected on glass fibre filters using a high-volume sampler. Two sets of samples were collected in 2001 (winter and summer campaigns) in representative zones of an industrial city of Argentina. The leaching scheme was applied to PM-10 particles and consisted in extracting the elements in four fractions, namely soluble and exchangeable elements; carbonates, oxides and reducible elements; bound to organic matter and sulfidic metals; and residual elements. Metals and metalloids at microg g(-1) level were determined in each fraction by inductively coupled plasma optical emission spectrometry (ICP OES). Analyte concentration varied from 14 microg g(-1) (equivalent to 1.0 ng m(-3)) for As to 11.8 mg g(-1) (equivalent to 2,089 ng m(-3)) for Al. Seven elements, namely Al, Cr, Fe, Mn, Pb, Ti and Zn showed similar distributions in both seasons while As was distributed in a significantly different manner in each season. The results exhibited low As contents in the first and second fractions that could be associated with routine coal combustion and a high content in the third and fourth fractions of the summer samples that could be linked to the use of pesticides. Aluminium, As, Cu, Mn, Ni, Ti, V and Zn were found in different percentages in the more bioavailable aqueous fraction with As, Mn, V and Zn exhibiting solubilities greater than 1% while Cr and Pb being insoluble. The content of Al, Cr, Cu, Fe, Ni, Pb, and Zn in the residual fraction was, in average, higher than 50%. A comparative assessment of the use of the underlying information available from fractionation studies compared to that obtained from total element content was done for Fe and Mn. It showed that the results obtained using chemical sequential extraction procedures allowed further discrimination of the potential air pollution sources. 相似文献
4.
This study reports the quantification of the toxicity of particulate matter (PM)-bound metals and their possible associated risks to human health. For assessment of PM, 24-h samples of PM10 and PM2.5 were collected by Mini Vol-TAS sampler at an urban site of Pune. Samples were sequentially extracted with ultrapure water and concentrated HNO3 and analyzed for “soluble” and “total” metals. Factor analysis identified the resuspension of road dust due to traffic, biomass burning, construction activities, and wind-blown dust as possible sources that played an important role for overall pollution throughout the year. Water-soluble proportion was found to be ≤20 % for Cr, Co, Fe, and Al; ≥50 % for Sr, Cd, Ca, and Zn; and a substantial proportion (~25–45 %) for Mn, Ba, K, Na, Ni, Mg, Cu, and Pb metals in PM10. For PM2.5, the water-soluble proportion was ≤20 % for Fe, Co, Ni, Cr, and Al, while Sr, K, and Cd were mostly soluble (>50 %) and Cu, Ba, Mn, Ca, Zn, Pb, Na, and Mg were substantially soluble (~25–45 %). In the present study, among the toxic metals, Cd and Pb show higher concentration in the soluble fraction and thus represent the higher bioavailability index and especially are harmful to the environment and exposed person. Risk calculations with a simple exposure assessment method showed that the cancer risks of the bioavailable fractions of Cr, Cd and Ni were greater than the standard goal. 相似文献
5.
Braun A 《Journal of environmental monitoring : JEM》2005,7(11):1059-1065
Recent and current research activities on the chemical characterization of carbon in airborne carbonaceous particulate matter with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are reviewed. NEXAFS spectroscopy uses soft X-rays from synchrotron radiation facilities and allows for the bulk and surface speciation of particulates smaller than 2.5 micrometres (PM 2.5). This relatively novel technique is often superior to TEM-EELS and FTIR spectroscopy. In the extreme case, one single PM particle is sufficient for characterization. Liquids, extracts, solid core and surface functional groups can be quantified. Preliminary data on combustion derived PM such as diesel soot, wood smoke and tobacco smoke are compared with ambient samples. 相似文献
6.
Bontempi E Benedetti D Zacco A Pantos E Boniotti S Saletti C Apostoli P Depero LE 《Journal of environmental monitoring : JEM》2008,10(1):82-88
In this work, the potentiality of two-dimensional X-ray diffraction (XRD(2)) to characterise aerosol particles collected on commercial glass filters is presented. Indeed, even if routine analysis usually requires only mass determination, and rarely chemical composition, phase determination is fundamental to recognize the primary or secondary origin of the particulate matter and thus to determine the main sources of the pollution and to model contamination events. The experiments were performed at Daresbury Synchrotron (UK) Laboratory on 14.1 Beamline. The analysis of filters collected in Tuscany (Italy) is discussed with particular attention to the presence of arsenic sulfide. The first results of these experiments are very promising, showing the presence of unexpected compounds in the particulate matter of the investigated area. 相似文献
7.
Airborne particulate matter (APM) is a major air pollutant, and the effect on human health of fine APM (PM2.5) deposited deep inside the lungs has recently become a serious concern. Moreover, soluble constituents may leach from APM, and intensify some health disorders. To identify the soluble chemical constituents of APM, size-classified APM was sampled in central Tokyo, and the elemental compositions of the water-soluble, acid-soluble and insoluble fractions were investigated. The extraction procedure was validated by calculating the mass balance of soluble and insoluble fractions of a standard APM reference material (NIST SRM 1648). Among the major elements, Fe and Ti in APM of all size classes and K in coarse APM were distributed primarily in the insoluble fraction and were inferred to be present as oxides or silicates, whereas Na and Mg in all size classes and K in fine APM were primarily in the water-soluble fraction and were inferred to be have originated mainly from sea salt. Among the trace elements, Zn and Cd in the fine APM (d < 2 microm) had large enrichment factors, indicating an anthropogenic origin, and were distributed primarily in the water-soluble fraction. When fine anthropogenic APM enters into the lungs, leached toxic elements, such as Cd, may adversely affect health. The higher the bonding energy of the monoxide molecule of the element was, the higher its distribution ratio was in the water-soluble fraction. Therefore, many metallic elements in APM were inferred to be present as oxygen-bonded compounds. 相似文献
8.
Speciation/fractionation of nickel in airborne particulate matter: improvements in the Zatka sequential leaching procedure 总被引:1,自引:0,他引:1
Modifications are reported to the sequential leaching analytical method for nickel speciation/fractionation specified by Zatka so that larger sample masses can be analyzed. Improvements have been made in the completeness of the sulfide/metallic separation during the peroxide-citrate leach step by use of a larger volume of leachant, a longer leach duration and an orbital shaker. Minimal extraction of metallic nickel in this prolonged sulfidic nickel extraction has been confirmed. An increase in the number of samples analyzed simultaneously using these modifications has resulted in substantial productivity improvements and concomitant lower costs. It is critical for practitioners of sequential leaching techniques to recognize potential limitations and to use professional judgment when interpreting results. For example, results obtained may not be biologically relevant in assessing health risks; the acts of sampling and storage may result in changes in fractionation with time; surface coatings/films may alter the ability of a leachant to react with the target compound; and leaching behaviours may be different for samples differing only in particle size distributions. 相似文献
9.
10.
Noble SR Horstwood MS Davy P Pashley V Spiro B Smith S 《Journal of environmental monitoring : JEM》2008,10(7):830-836
Pb isotope compositions of biologically significant PM(10) atmospheric particulates from a busy roadside location in London UK were measured using solution- and laser ablation-mode MC-ICP-MS. The solution-mode data for PM(10) sampled between 1998-2001 document a dramatic shift to increasingly radiogenic compositions as leaded petrol was phased out. LA-MC-ICP-MS isotope analysis, piloted on a subset of the available samples, is shown to be a potential reconnaissance analytical technique. PM(10) particles trapped on quartz filters were liberated from the filter surface, without ablating the filter substrate, using a 266 nm UV laser and a dynamic, large diameter, low-fluence ablation protocol. The Pb isotope evolution noted in the London data set obtained by both analytical protocols is similar to that observed elsewhere in Western Europe following leaded petrol elimination. The data therefore provide important baseline isotope composition information useful for continued UK atmospheric monitoring through the early 21(st) century. 相似文献
11.
An overview is presented of the development and ongoing activities of the WHO/UNEP air quality monitoring project. The project started in 1973 and is part of the Global Environmental Monitoring System. An analysis of the sulphur dioxide and suspended particulate matter is also included. The results show that the annual mean concentration for sulphur dioxide has decreased since 1973; for suspended particulate matter, however, a gradual increase is observed since 1976. 相似文献
12.
Horemans B Worobiec A Buczynska A Van Meel K Van Grieken R 《Journal of environmental monitoring : JEM》2008,10(7):867-876
Total suspended particulate (TSP), PM(2.5) and BTEX were collected in nine offices in the province of Antwerp, Belgium. Both indoor and outdoor aerosol samples were analysed for their weight, elemental composition, and water-soluble fraction. Indoor TSP and PM(2.5) concentrations ranged from 7-31 microg m(-3) and 5-28 microg m(-3), with an average of 18 and 11 microg m(-3), respectively. Of all the elements analysed in indoor TSP, more than 95% was represented by Al, Si, K, Ca, Fe, Cl and S, accounting for 12% of the TSP by mass. The other elements showed significant enrichment relative to the earth's crust. The water-soluble ionic fraction accounted for almost 30% of the sampled indoor TSP by weight, and was enriched by anthropogenic activities. It was shown that the indoor PM levels varied among the offices, depending on the ventilation pattern, location, and occupation density of the office. Indoor BTEX levels ranged together from 5-47 microg m(-3) and were considerably higher than the corresponding outdoor levels. It was observed that some recently constructed and renovated buildings were clearly burdened with elevated levels for toluene, ethyl benzene, and xylenes, while outdoor air was found to be the main source for BTEX levels at the 'older' offices. 相似文献
13.
An investigation to find out presence of particulate matter in Marikana, a mining area in Rustenburg town, South Africa, was carried out in the months of August and November of 2008. Samples were collected for measurements of particulate matter (PM) of particle diameters of PM10, PM2.5, and PM1. After gravimetric analysis of daily measurements, it was found that PM10 concentration values ranged between 3 and 9 ??g/m3, PM2.5 concentration values ranged between 16 and 26 ??g/m3, and PM1 concentration values ranged between 14 and 18 ??g/m3 for the month of August 2008. For the month of November, it was found that PM10 concentration values ranged between 2 and 8 ??g/m3, PM2.5 concentration values ranged between 0 and 5 ??g/m3, and PM1 concentration values ranged between 4 and 15 ??g/m3. This study was undertaken as preliminary work having in mind that mining activities could be emitting high levels of particulate matter in the atmosphere which might be degrading the quality of the air. It was observed, however, that the daily particulate matter especially of PM10 emitted were quite low when compared to laid down International Air Quality Standards. The standards did not give guidelines for particulate matter of diameter 2.5 ??m. It was concluded that particulate matter came from three major sources: platinum mining, domestic biomass burning, and traffic emissions due to fuel burning. 相似文献
14.
Mahmoud Mohammadyan Mahboobeh Ghoochani Itai Kloog Sabah Ahmed Abdul-Wahab Kaan Yetilmezsoy Behzad Heibati Krystal J. Godri Pollitt 《Environmental monitoring and assessment》2017,189(5):235
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries. 相似文献
15.
Furuta N Iijima A Kambe A Sakai K Sato K 《Journal of environmental monitoring : JEM》2005,7(12):1155-1161
APM was collected and trace elements existing in the particles were monitored since May 1995 in this study. APM sample was collected separately by size (d < 2 microm, 2-11 microm and >11 microm) on the roof of the university building (45 m above ground) in the campus of Faculty of Science and Engineering, Chuo University, Tokyo, Japan, using an Anderson low volume air sampler. The collected sample was digested by HNO3, H2O2 and HF using a microwave oven, and major elements (Na, Mg, Al, K, Ca and Fe) were measured by ICP-AES, and trace elements (Li, Be, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba and Pb) were measured by ICP-MS. It was observed that the APM concentration was higher between the winter and the spring, compared to during the summer. The enrichment factor was calculated for each element in each set of APM (d < 2 microm, 2-11 microm and >11 microm). Seasonal trends of enrichment factors were examined, and the elements were classified into 3 groups according to the common seasonal behavior. It is likely that the elements in the same group have common origins. Toxic pollutant elements (Sb, Se, Cd, Pb and As) were found in small particles with d of <2 microm in concentrated levels. Antimony (Sb) had the highest enrichment factor, and the results suggested that Sb level in APM was extremely high. The origins of Sb were sought, and wastes from plastic incineration and brake pad wears of automobiles were suspected. Each set of APM (d < 2 microm, 2-11 microm and >11 microm) was classified by the shape, and the shape-dependent constituents of a single APM particle were quantitatively measured by SEM-EDX. High concentration of Sb was found in APM <2 microm and square particles. Particles less than 2 microm and square shaped particles were major particles produced by actual car braking experiments. From these experimental results it was concluded that the source of Sb in squared APM <2 microm is considered to be from brake pad wear. 相似文献
16.
P. A. Kassomenos K. Dimitriou A. K. Paschalidou 《Environmental monitoring and assessment》2013,185(8):6933-6942
Studies conducted over the past decades have provided substantial evidence that both the long- and the short-term exposures to ozone and particulate matter are responsible for mortality and cardiopulmonary morbidity. This paper examines the relationship between exposure to ambient concentrations of ozone (O3) and particulate matter with aerodynamic diameter of less than 10 μm (PM10) and public health and provides the quantification of the burden of disease from PM10 and O3-related mortality and morbidity through a Life Cycle Impact Assessment focused on the greater area of Athens, Greece. Thus, characterizations factors (CFs) for human health damage are calculated in 17 sites in Athens, in terms of the annual marginal change in the disability-adjusted life years (DALYs) due to a marginal increase in the ambient concentrations. It is found that the PM10 intake factors range between 1.25?×?10?6 and 2.78?×?10?6, suggesting that 1.25–2.78 μg of PM10 are inhaled by the Athenian population per kg of PM10 in the urban atmosphere. Mortality due to chronic exposure to PM10 has a dominant contribution to years of life lost with values ranging between 6.2?×?10?5 and 1.1?×?10?4. On the other hand, the mortality caused by short-term exposure to O3 is weaker with the CFs ranging between 1.58?×?10?7?years of life lost in the urban/traffic areas and 4.71?×?10?7?years in the suburbs. Finally, it is found that 9,000 DALYs are lost on average in Athens, corresponding to 0.0018 DALYs per person. This is equal to 0.135 DALYs per person over a lifetime of approximately 75 years, assuming constant emission rates for the whole period. 相似文献
17.
In this study, the size distribution of airborne particles and related heavy metals Co, Cd, Sn, Cu, Ni, Cr, Pb and V in two urban areas in Istanbul: Yenibosna and Goztepe, were examined. The different inhalable particles were collected by using a cascade impactor in eight size fractions (<0.4 μm, 0.4-0.7 μm, 1.1-2.1 μm, 2.1-3.3 μm, 3.3-4.7 μm, 4.7-5.8 μm, 5.8-9 μm and >9 μm) for six months at each station. Samples were collected on glass fiber filters and filters were extracted and analyzed using ICP-MS. Log-normal distributions showed that the particles collected at the Yenibosna site have a smaller size compared to the Goztepe samples and the size distribution of PM was represented the best by the tri-modal. The average total particle concentrations and standard deviations were obtained as 67.7 ± 17.0 μg m(-3) and 82.1 ± 21.2 μg m(-3), at the Yenibosna and G?ztepe sites, respectively. The higher metal rate in fine and medium coarse PM showed that the anthropogenic sources were the most significant pollutant source. Principal component analysis identified five components for PM namely traffic, road dust, coal and fuel oil combustion, and industrial. 相似文献
18.
Hueiwang Anna Jeng 《Environmental monitoring and assessment》2010,169(1-4):597-606
Exposure to ambient particulate matter (PM) has been associated with a number of adverse health effects. Increasing studies have suggested that such adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. The study aimed to assess physical characteristics and chemical compositions of PM and to correlate the results to their redox activity. PM2.5 (mass aerodynamic diameter ≤2.5 μm) and ultrafine particles (UFPs, mass media aerodynamic diameter <0.1 μm) were collected in an urban area, which had heavy traffic and represented ambient air pollution associated with vehicle exhaust. Background samples were collected in a rural area, with low traffic flow. Organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), and metals were analyzed. The dithiothreitol activity assay was used to measure the redox activity of PM. Results showed that UFPs have higher concentrations of OC, EC, and PAHs than those of PM2.5. Several metals, including Fe, Cu, Zn, Ti, Pb, and Mn, were detected. Among them, Cu had the highest concentrations, followed by Fe and Zn. Organic carbon constituted 22.8% to 59.7% of the content on the surface of PM2.5 and UFPs. Our results showed higher redox activity on a per PM mass basis for UFPs as compared to PM2.5. Linear multivariable regression analyses showed that redox activity highly correlated with PAH concentrations and organic compounds, and insignificantly correlated with EC and metals, except soluble Fe, which increased redox activity in particle suspension due to the presence of ROS. 相似文献
19.
Carty CL Gehring U Cyrys J Bischof W Heinrich J 《Journal of environmental monitoring : JEM》2003,5(6):953-958
Endotoxin is a toxic, pro-inflammatory compound that has been detected in indoor air and dust in homes and occupational settings, and also in outdoor air. Data on the outdoor sampling of endotoxin are limited. Currently, little is known about the seasonal variation and influence of temperature on outdoor endotoxin levels. In the present study, we report endotoxin levels in fine fraction particulate matter with a 50% aerodynamic cutoff diameter of 2.5 microm (PM2.5) and describe the seasonal variation of endotoxin in Munich, Germany. In 1999-2000, PM2.5 was collected at forty outdoor monitoring sites across Munich. Approximately four samples were collected at each site for a total of 158 samples. Endotoxin concentrations in the PM2.5 samples were determined using the kinetic chromogenic Limulus Amebocyte Lysate (LAL) assay. The geometric mean endotoxin concentration was 1.07 EU mg PM2.5(-1) (95% C.I.: 0.915-1.251) or 0.015 EU m(-3) of sampled air (95% C.I.: 0.013-0.018). Munich endotoxin levels were significantly related to ambient temperature (p < 0.0001) and percent relative humidity (p < 0.0001). Sampling periods with higher average temperatures yielded higher levels of endotoxin in PM2.5 (r = 0.641), whereas decreases in percent relative humidity were associated with increased endotoxin levels in PM2.5 (r = -0.388). Endotoxin levels were significantly higher during the warmer seasons of spring [means ratio (MR): 2.5-2.7] and summer (MR: 2.1-3.0) than during winter. Although temperature and relative humidity do not explain all of the variability in endotoxin levels, their effects were significant in our data set. Temperature effects and seasonal variation of endotoxin should be considered in future studies of outdoor endotoxin. 相似文献
20.
A health hazard, specifically the leukaemia risk, is evaluatedfrom different sources of benzene exposure with relation to apopulation living in an urban area of Italy. The population exposure is calculated for a reference year by sexand lyfestyle, with respect to smokers and non smokers. Potentialhealth risk is therefore quantified by means of mathematicalmodels and the relative significance of the different sources is described. The results of the analysis are useful for the identification ofappropriate risk reduction strategies to minimize exposure, inparticular when resulting from lifestyle and personal activities. 相似文献