首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Seventeen sediment samples at three representative sites (the Yuqiao Reservoir, the Haihe River and the Haihe River Estuary) in Tianjin, northern China, were analyzed to investigate the pollution status, accumulation and mobility of mercury (Hg). The results show that the Haihe River has to be considered as moderate to strongly contaminated with Hg (2 < mean I(geo) = 2.35 < 3), where total Hg contents were ca. 3 to 24 orders of magnitude greater than the regional background value. The sediments collected near a coal-fired power plant in an urban area were found to have very high Hg concentrations, which were significantly related to Hg emissions from coal-fired utility boilers. In the Yuqiao Reservoir, the surface sediments have to be considered as unpolluted with Hg (mean I(geo) = -0.05 < 0) and the Haihe River Estuary sediments have to be considered as unpolluted to moderately polluted with Hg (0 < mean I(geo) = 0.18 < 1). Sediment-bound Hg in the Yuqiao Reservoir and the Haihe River Estuary was found to be predominantly associated with the organo-chelated phase of the sediment (38.3% and 50.5%, respectively). However, unlike the Yuqiao Reservoir and the Haihe River Estuary, Hg in the Haihe River sediments existed mainly as sulfide Hg and elemental Hg, which accounted for 54.2% and 30.7% of total Hg, respectively. The availability of this element seemed restricted. The majority of Hg contamination in the Haihe River sediments had been attributed to historic and modern atmospheric deposition and Hg released from the Haihe River sediments didn't seem to be an important pollutant pathway into the Haihe River Estuary. The results provide new insights into Hg contamination in this region.  相似文献   

2.
Characterization of heavy metals in water and sediments in Taihu Lake, China   总被引:11,自引:0,他引:11  
To explore a comprehensive status of heavy metals in the Taihu Lake, which is one of the most important waters in China, water and sediment samples were taken throughout the lake during April to May of 2010, and metal elements (Cu, Cd, Cr, Ni, Pb, Sn, Sb, Zn, Mn) were analyzed in the water column, interstitial water and sediment. Relevant standards were used to assess the sediment and water quality. Results show that, in the lake water column, the average concentration of all metals ranged from 0.047 μg/l (Cd) to 8.778 μg/l (Zn). The concentration in the river water was usually higher than in the lake water for many metals. In the interstitial water Mn was significantly higher than that in water column, and other metals had no significant difference between the two media. In the surface sediment, average metal content ranged from 1.325 mg/kg (Cd) to 798.2 mg/kg (Mn). Spatially, contents of many metals were higher in Zhushan Bay than in other lake areas, and there existed a clear content gradient from the river to the lake for both water and sediment. On the sediment profiles, many metals presented an increasing trend from the depth of 15-20 cm to the top, which is indicative of the impact of increasingly intensive human activities from that period. Quality assessment indicates that metals in water phase are generally safe compared with USEPA "National Recommended Water Quality Criteria," with the exception of Mn in the interstitial water and Sb in the river water. Whereas the sediment is widely contaminated with metals to some extent compared with the "Consensus-Based Sediment Quality Guidelines," and Cu, Cr, and Ni are more likely to raise ecological risks. This work could be a basis for the ongoing China's criteria strategy.  相似文献   

3.
The chemical speciation of nine heavy metals in intertidal sediments from Quanzhou Bay was determined using a modified sequential extraction procedure, proposed by the Commission of the European Community Bureau of Reference. The results show that Mn presents the highest percentage in the acid-soluble fraction, and Pb and Cu present the highest percentages in the reducible fraction. The highest percentages of Fe, V, Cr, Ni, Zn, and Co were found in the residual fraction. The mobility order of the heavy metals studied on the basis of the nonresidual content of the elements is Mn > Pb > Cu > Co > Zn > Ni > Cr > V > Fe. The assessment on potential ecological risk indices of some heavy metals indicates that Zn, Ni, and Cr show moderate contamination, while Cu and Pb show slighter contamination. On the whole, the comprehensive potential ecological risk index of Cu, Zn, Ni, Cr, and Pb in the sediments presents moderate degree.  相似文献   

4.
Manila clams (Ruditapes philippinarum) and sediments were collected bimonthly during 2007 at five locations in Jiaozhou Bay near Qingdao, China, to determine heavy metal concentrations and to assess the validation of R. philippinarum as a metal biomonitor. Concentrations of heavy metals in clam soft tissues ranged between 0.75 and 3.31, 0.89 and 15.20, 5.70 and 26.03, 52.12 and 110.33, 10.30 and 72.34, 9.64 and 28.60, and 3.15 and 52.75 μg g???1 dry weight for Cd, Pb, Cu, Zn, Mn, Cr, and Ni, respectively. Most of the highest values occurred at the northeast bay and the lowest values occurred at the western part. Regarding seasonal variation, relatively high tissue metal concentrations were observed during October or December. A similar pattern was also found in habitat sediments. There was a strong correlation between the concentrations of Cd, Pb, Zn, Mn, Cr, and Ni in soft tissues and surrounding sediments. It is indicated that R. philippinarum could be used as a biomonitor for heavy metal contamination in Jiaozhou Bay.  相似文献   

5.
The concentrations of arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc in surface sediments collected from the east coast of peninsular Malaysia, along the South China Sea, were measured by two methods instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The obtained results were use to determine the areal distribution of the metals of in the east coast of peninsular Malaysia and potential sources of these metals to this environment. The geochemical data propose that most of the metals found in the east coast of peninsular Malaysia constitute a redistribution of territorial materials within the ecosystem. Then, the metal concentrations can be considered to be present at natural background levels in surface sediments.  相似文献   

6.
An intensive investigation was conducted to study the accumulation, speciation, and distribution of various heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in sediments from the Yangtze River catchment of Wuhan, China. The potential ecological risks posed by these heavy metals also were estimated. The median concentrations of most heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were higher than the background values of soils in Wuhan and were beyond the threshold effect level (TEL), implying heavy metal contamination of the sediments. Carbonate-bound Cd and exchangeable Cd, both of which had high bioavailability, were 40.2% and 30.5% of the total for Cd, respectively, demonstrating that Cd poses a high ecological risk in the sediments. The coefficients of the relationship among Pb, Hg, and Cu were greater than 0.797 using correlation analysis, indicating the highly positive correlation among these three elements. Besides, total organic carbon content played an important role in determining the behaviors of heavy metals in sediments. Principal component analysis was used to study the distribution and potential origin of heavy metals. The result suggested three principal components controlling their variability in sediments, which accounted for 36.72% (factor 1: Hg, Cu, and Pb), 28.69% (factor 2: Cr, Zn, and Ni), and 19.45% (factor 3: As and Cd) of the total variance. Overall, 75% of the studied sediment samples afforded relatively low potential ecological risk despite the fact that generally higher concentrations of heavy metals relative to TEL were detected in the sediments.  相似文献   

7.
The concentration and speciation of heavy metals (Cr, Ni, Cu, Zn, Cd, Pb) in surface sediments (??≤ 63 μm) of Jinjiang River tidal reach are determined to evaluate the metal behavior. A modified BCR three-step sequential extraction procedure is carried out, and the residual fraction is undertaken by microwave-assisted acid digestion. The index of geo-accumulation indicates that Cd appeared highest among all these heavy metals in surface sediments, Cr, Cu, Zn lower, and Ni, Pb the least. The percentage of Zn, Cd is comparatively higher in the acid soluble fraction, Pb and Cu higher in the reductive fraction, indicating larger potential danger to the environment. So it is essential for developing the future remediation plans and pollution control strategies.  相似文献   

8.
The sediment in Dianchi Lake, a hypereutrophic plateau lake in southwest China, was investigated and the concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Fe, Mn, and Cd) in the sediment and sediment properties were determined. Their spatial distribution and sources were analyzed using multivariate statistics. The result indicated that the studied metals exhibited three distinct spatial patterns; that is, Cu, Pb, Zn, and Ni had a similar distribution, with a concentration gradient from the north to the south part of the lake; Cd and Cr presented a similar distribution; Fe and Mn presented a quite different distribution than other metals, which indicated their different sources and geochemistry processes. Correlation and cluster analysis (CA) provided origin information on these metals and the CA result was observed corresponding to those three spatial patterns. Principal component analysis further displayed metal source and driving factors; that is, Cu, Pb, Zn, Ni, Cd, and Cr were mainly derived from anthropogenic sources, and Fe and Mn were mainly the result of natural processes. Sediment assessment was conducted using geoaccumulation index (Igeo), potential ecological risk indices, and USEPA guidelines. The result indicated that, generally, Cd was the most serious risk metal; Pb and Cu posed moderate potential ecological risk; Cr, Zn, and Ni had slight ecological risk; Fe and Mn had little risk. Comparison of the assessment tools showed that each of the methods had its limitation and could bias the result, and the combined use of the methodologies and local knowledge on lithology or metal background value of soil in the practice would give a more comprehensive understanding of the metal risk or pollution. Statistical analysis also indicated that nutrients had different impacts on Fe, Mn, and trace elements, which implied that in the assessment of metal risk, nutrients impact should be taken into consideration especially for eutrophic waters.  相似文献   

9.
10.
The article presents the distribution and enrichment of acid-leachable heavy metals (ALHMs) Cu, Zn, Pb, Cr, Mn, and Fe in the intertidal sediments collected from Quanzhou Bay, southeast coast of China. The contents of ALHMs along with sediment texture, total organic carbon, S2???, and CaCO3 in surface sediments were analyzed to identify the input of heavy metals from various sources. The enrichment of ALHMs in the sediments is mainly attributed to the intense industrial activities around Quanzhou Bay and to the serried activities of intertidal breed aquatics along the seacoast. The results also illustrate the association between the ALHMs with the finer fractions, organic matter, and Fe oxyhydroxides in the sediments. The above results were very supported by the multivariate statistical analyses, including correlation, principal component analysis, and hierarchical clustering analysis. Comparative results of ALHMs in the intertidal sediments from Quanzhou Bay with those in other domestic bays and estuaries indicate that the study area has been enriched with heavy metals, especially with Zn, Cu, and Pb, during the past few decades. The results of the present study suggest that the authorities should pay attention to the current status and take some measures to control the heavy metal pollution in the study area.  相似文献   

11.
The concentration of heavy metals in the bottom sediment and interstitial water collected from two reservoirs in Singapore was found to be enriched. A distribution coefficient,K d , was used to assess the chemical stability of heavy metals in the sediments. Numerical models were used to assess (1) the redistribution of heavy metals in a changing environment, and (2) long-term self clean-up capabilities of a reservoir.  相似文献   

12.
Heavy metals in sediments from Baisha Bay, Nan'ao Island, one of Guangdong Province's largest mariculture bases in Southern China, were investigated. The results display that the concentrations of 6 heavy metals from surface sediments were 0.040-0.220 (Cd), 24.22-39.61 (Pb), 25.30-42.66 (Cr), 10.83-19.54 (Ni), 15.06-39.24 (Cu) and 55.12-141.73 mg kg(-1) (Zn), respectively. The highest concentrations and the greatest increasing rates of heavy metals were found in a sediment core in a fish cage culture area due to receiving sewage discharge, uneaten fish bait, and boat gasoline combustion. Cd was preferentially associated with the acid-soluble fraction and Pb mainly with the reducible fraction in surface sediments. Meanwhile, Cd and Pb displayed greatest labile fractions, indicating anthropogenic origin. A principal component analysis (PCA) revealed three groupings (Cd; Cr, Ni and Cu; Pb and Zn) that mainly result from different distributions of the metals in the various fractions. The ecological risk of the polluted sediments stemmed mainly from Cd, and from Pb and Cu to a lesser degree. It is suggested that the density of fish-stocking be controlled, periodic movement of rafts (cages) be introduced, and the total numbers of net-cages and human activities in the mariculture zones be restricted. in order to facilitate the recovery of the polluted sediment.  相似文献   

13.
Determination of only total element in sediments does not give an accurate estimate of the likely environmental impacts. Speciation study of metals in sediment provides information on the potential availability of metals (toxic) to biota under various environmental conditions. In water, the toxic metal specie is the free hydrated metal ion. The toxicity of metals depends especially on their chemical forms rather than their total metal content. The present study focuses on Qaraaoun Reservoir, Lebanon. Earlier studies focused only on total metal concentrations in sediment and water. The objective of this study was to determine metal speciation (Fe, Cr, Ni, Zn, Cu, Pb, Cd) in the (operationally defined) sediment chemical fractions and metal speciation in reservoir water. This would reflect on metal bioavailability and toxicity. Water samples and bed sediments were collected from nine sites during the dry season and a sequential chemical fraction scheme was applied to the <75-??m sieve sediment fraction. Metal content in each fraction was determined by the FAAS technique. The data showed that the highest percentages of total metal content in sediment fractions were for: Fe in residual followed by reducible, Cr and Ni in residual and in reducible, Cu in organic followed by exchangeable, Zn in residual and in organic, Pb in organic and carbonate, Cd was mainly in carbonate. Total metal content in water was determined by ICP-MS technique and aqueous metal speciation was predicted using AQUACHEM software interfaced to PHREEQC geochemical computer model. The water speciation data predicted that a high percentage of Pb and Ni were present as carbonate complex species and low percentages as free hydrated ions, highest percentage of Zn as carbonate complex species followed by free hydrated ion, highest percentage of Cd as free hydrated ion followed by carbonate complex species. The sensitivity attempt of free hydrated ion of Ni, Zn, Pb, and Cd in reservoir water revealed dependence of Zn and Cd on pH and alkalinity, while Ni and Pb were only dependent on pH.  相似文献   

14.
Autoclave decomposition method for metals in soils and sediments   总被引:1,自引:0,他引:1  
Leaching of partially leached metals (Fe, Mn, Cd, Co, Cu, Ni, Pb, and Zn) was done using autoclave technique which was modified based on EPA 3051A digestion technique. The autoclave method was developed as an alternative to the regular digestion procedure passed the safety norms for partial extraction of metals in polytetrafluoroethylene (PFA vessel) with a low constant temperature (119.5° ± 1.5°C) and the recovery of elements were also precise. The autoclave method was also validated using two Standard Reference Materials (SRMs: Loam Soil B and Loam Soil D) and the recoveries were equally superior to the traditionally established digestion methods. Application of the autoclave was samples from different natural environments (beach, mangrove, river, and city soil) to reproduce the recovery of elements during subsequent analysis.  相似文献   

15.
Heavy metals concentrations in surface sediments from Miyun Reservoir were determined to evaluate the pollution and identify the sources. The average content of metals in sediments from Miyun Reservoir followed the order Al>Fe>Ti>Mn>V>Zn>Cr>Ni>Cu>Pb>As>Cd>Hg, and the most mean values were lower than the globe average shale. Heavy metals concentrations at the inflow area of Baihe were higher than those at the inflow area of Chaohe. Heavy metals pollution assessment was carried out by factor enrichment (EF), geoaccumulation index (I geo), and potential ecological risk (RI). The EF values for all heavy metals except Hg, Cd, and Cr at several sites were lower than 3, suggesting low anthropogenic impact on the metals level. The I geo values of Pb indicated that half of the sites were unpolluted to moderately polluted and mainly located in the Baihe area of the reservoir. The RI showed that heavy metals of Miyun Reservoir were low potential risk, however, Hg approached or belonged to moderate ecological risk at sites of M5, M7, and M13. Correlation analysis and principal component suggested that Ni, Cu, V, Zn, Mn, Cr, Ti, and Pb were derived from soil erosion in upper reaches of the reservoir, while Fe, Cd, Hg, As, and partial Pb originated from anthropogenic sources, particularly industrial mining and gold tailings.  相似文献   

16.
A metal fractionation study on bed sediments of River Narmada in Central India has been carried out to examine the enrichment and partitioning of different metal species between five geochemical phases (exchangeable fraction, carbonate fraction, Fe/Mn oxide fraction, organic fraction and residual fraction). The river receives toxic substances through a large number of tributaries and drains flowing in the catchment of the river. The toxic substances of particular interest are heavy metals derived from urban runoff as well as municipal sewage and industrial effluents. Heavy metals entering the river get adsorbed onto the suspended sediments, which in due course of time settle down in the bottom of the river. In this study fractionation of metal ions has been carried out with the objective to determine the eco-toxic potential of metal ions. Although, in most cases (except iron) the average trace/heavy metal concentrations in sediments were higher than the standard shale values, the risk assessment code as applied to the present study reveals that only about 1–3% of manganese, <1% of copper, 16–19% of nickel, 4–20% of chromium, 1–4% of lead, 8–13% of cadmium and 1–3% of zinc exist in exchangeable fraction and therefore falls under low to medium risk category. According to the Geo-accumulation Index (GAI), cadmium shows high accumulation in the river sediments, rest of other metals are under unpolluted to moderately polluted class.  相似文献   

17.
Heavy metal mobility was studied in overbank sediments of the Grote Beek river in Central Belgium. The geochemical signature of heavy metals in fine-scale sampled overbank sediments was compared with data on heavy metal emission into the river. The influence of acidification, organic and inorganic complexation on heavy metal mobility in overbank sediments was studied by single and sequential extractions and leaching tests. As confirmed by these tests, the elevated CaCl(2) content of the river water significantly enhanced the mobilisation of especially Cd, while Zn was mobilised to a lesser extent. The mobilisation of As on the other hand decreased in the presence of elevated CaCl(2) concentrations. Based on the results of single extractions, two highly contaminated zones with a different Cd mobility were observed in one of the overbank profiles. A detailed investigation of Cd leaching behaviour in the zone of Fe-accumulation during pH(stat) leaching tests, suggested that it was related to the association of Cd with Fe-oxides, while adsorption was the dominant binding form of Cd in the clay-rich part of the overbank sediment profile.  相似文献   

18.
Distinguishing and quantifying anthropogenic trace metals and phosphorus accumulated in sediment is important for the protection of our aquatic ecosystems. Here, anthropogenic proportion and potential sources of trace metals and phosphorus in surface sediments of Chaohu Lake were evaluated based on the exhaustive geochemical data. The analysis shows that concentrations of major and trace metals, and phosphorus, displayed significant spatial diversity and almost all elements were over the pre-industrial background value, which should be related to the variations of sediment composition partially. Therefore, conservative element normalization was introduced and calculated enrichment factors (EFs) of the elements were referenced highlighting the human contamination. EFs of the major and trace metals, except Zn, Pb, and Cu, were all nearly 1.0, indicating the detrital origin. The EFs of Zn, Pb, Cu and phosphorus were 1.0–10.4, 1.0–3.8, 1.0–4.9, and 1.0–7.6, respectively, showing moderate to significant contamination. Higher EFs of Zn, Pb and Cu occurred in the mouth areas of Nanfei River and Zhegao River, and they decreased to the lake center in the northwest and northeast lake areas, respectively. We deduced that anthropogenic Zn, Pb, and Cu were mainly from urban and industrial point sources and the non-point sources of atmospheric deposition contributed little to their contamination. The EFs of phosphorus showed similar spatial degradation with that of Zn, Pb, and Cu. Moreover, higher EFs (>1) of phosphorus also occurred in other areas adjacent to the river mouths besides Nanfei River and Zhegao River. This indicated that the non-point agricultural source may also be responsible for the contamination of phosphorus in Chaohu Lake in addition to the urban sewage sources. Anthropogenic phosphorus was mainly concentrated in the speciation of NaOH-P, which had higher potential biological effects than the detrital proportion. Concentrations of Zn, Pb and Cu surpassed the threshold effect concentrations (TEC) of consensus-based sediment quality guidelines of freshwater ecosystems, especially in the contaminated northwest area of Chaohu Lake. This highlighted the contributions of anthropogenic contamination to the elevated potential biological effects of trace metals. Though there had been no obvious human contamination of Cr and Ni in Chaohu Lake, concentrations were all over the TECs, which may be due to higher background levels in the parent materials of soils and bedrocks in Chaohu Lake catchment.  相似文献   

19.
Twenty-one surface sediment samples were collected from Akkaya Dam. Heavy metal concentrations (Mo, Cu, Pb, Zn, Ni, Co, Mn, Fe, Cr, As, V and Cd), grain size, organic carbon and carbonate contents were studied in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of dam. The sediments in the study area are mostly very fine sands. However, mud was observed in the northeast of the dam. Sediment pollution assessment was carried out using enrichment factor. The calculation of enrichment factors showed that Mo is depleted by 1.0 whereas Cu, Pb, Zn, Ni, Co, Mn, As, V, Cr and Cd are enriched by 3, 5.4, 7, 2.7, 2.2, 3.4, 42.3, 2.1, 1.8 and 7.2, respectively. Relatively high concentrations heavy metals occurred in north (textile industry area) and east (Karasu River) due to enrichment controlled by anthropogenic wastes. The results of correlation analysis show low–medium positive and negative correlations among metals, grain size, carbonate contents and organic carbon and indicate that heavy metals in sediments of the Akkaya Dam have different anthropogenic sources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号