首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed investigation was conducted to evaluate heavy metal sources and their spatial distribution in agricultural fields in the south of Tehran using statistics, geostatistics, and a geographic information system. The content of Cd, Cu, Co, Pb, Zn, Cr, and Ni were determined in 106 samples. The results showed that the primary inputs of Cr, Co, and Ni were due to pedogenic factors, while the inputs of Zn, Pb, and Cu were due to anthropogenic sources. Cd was associated with distinct sources, such as agricultural and industrial pollution. Ordinary kriging was carried out to map the spatial patters of heavy metals, and disjunctive kriging was used to quantify the probability of heavy metal concentrations higher than their recommended threshold values. The results show that Cd, Cu, Ni, and Zn exhibit pollution risk in the study area. The sources of the high pollution levels evaluated were related to the use of urban and industrial wastewater and agricultural practices. These results are useful for the development of proper management strategies for remediation practices in the polluted area.  相似文献   

2.
3.
4.
In modern civilization, numerous anthropogenic activities release a variety of pollutants into the environment and with anomalous enrichment of heavy metals it causes surface and subsurface contamination. The aquatic sediments provide pertinent tools for the quality assessment of urban and industrial environments in large cities. The present study reveals short-term accumulative trends of heavy metals (Co, Cd, and Pb) in the sand and silt dominated riverbed sediments from Chitgar industrial area (Tehran, Iran) between the period of May 2007 and May 2008. Lead demonstrates highest concentration in residential areas, cadmium in and around industrial areas, whereas cobalt shows least variability. Geo-accumulation index implies moderately to highly polluted sediments with respect to Cd and Pb. With few exceptions, all three metals at different sampling stations display short-term increasing trends, independent of seasonal variability with urban and industrial distends along the river being the chief sources of contamination.  相似文献   

5.
6.
The aim of this paper is to evaluate total and bioavailable concentration of heavy metals in agricultural soils in order to estimate their distribution, to identify the possible correlations among toxic elements and the pollution sources, to distinguish the samples in relation to sampling site or to sampling depth, and to evaluate the available fraction providing information about the risky for plants. In particular, we reinvestigated total concentrations of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V, and Zn and available concentrations of As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, and Zn in soil from Apulia (Southern Italy). Analytical results showed that total concentrations, for all soils, are in the range permitted by regulations in force in Italy, but some soils evidence slight enrichment of Cd, Cr, Cu, Pb, and Zn. All the heavy metals in the available fraction were below the detection limits of the analytical techniques used except Cu, Ni, Pb, and Zn.  相似文献   

7.
8.
In order to assess the metal pollution status of agricultural lands of Mandi Bahauuddin receiving industrial wastewater, 35 top soil samples were investigated for the determination of selected metal levels, i.e., Fe, Cu, Cd, Cr, Ca, Ni, and Pb by flame atomic absorption spectroscopy under optimum analytical conditions. The distribution of these metals in different operationally defined chemical fractions was also determined by using the sequential extraction technique. The highest mean total concentration was found for Fe while the least one was observed for Pb. All the studied metals were found to be present at levels much enhanced than national and international standards. Moreover, most of the metals were distributed principally in residual fraction with the exception of Ni which was found to be associated mainly with oxidizable fraction. The significant correlations were observed between Fe-Mn oxide-bound and residual fractions and exchangeable and oxidizable fractions for most of the metals. The highest mobility was exhibited by Ni that evidenced its enhanced bioavailability in the soil. The multivariate statistical analyses in terms of principal component analysis (PCA) and cluster analysis (CA) revealed multiple sources for various geochemical fractions of different metals. CA also revealed that the nonresidual fractions of most of the metals were very closely associated while PCA presented a distinctive behavior of Ca in the soil. It was therefore suggested that in order to avoid the metal contamination arising from industrial wastewater, appropriate remediation strategies must be adopted.  相似文献   

9.
To effectively investigate the spatial variability of heavy metals in soil, produce a higher quality spatial distribution map, and identify the potential pollution sources of heavy metals, geostatistics was employed to evaluate the effect of scale on spatial variability of heavy metals in Beijing agricultural soils. The results revealed that spatial variability of Cr, Ni, Zn, and Hg was dependent on scale. Validation of the optimality of theoretical semivariance and comparative analysis of the estimation accuracy demonstrated that the multi-scale nested model can reveal the spatial structure of heavy metals effectively and improve the estimation accuracy better than the single-scale method, thereby enabling production a higher quality spatial interpolation map. Thus, the multi-scale kriging nested model is a useful tool for revealing spatial variability of heavy metals in soils, while the spatial distribution maps allow the identification of hot spots with high concentrations of heavy metals.  相似文献   

10.
Levels and speciation of heavy metals in soils of industrial Southern Nigeria   总被引:10,自引:0,他引:10  
A knowledge of the total content of trace metals is not enoughto fully assess the environmental impact of polluted soils. Forthis reason, the determination of metal species in solution isimportant to evaluate their behaviour in the environment andtheir mobilization capacity. Sequential extraction procedure wasused to speciate five heavy metals (Cd, Pb, Cu, Ni and Zn) fromfour contaminated soils of Southern Nigeria into sixoperationally defined geochemical species: water soluble,enchangeable, carbonates, Fe-Mn oxide, organic and residual.Metal recoveries were within ± 10% of the independentlydetermined total Cd, Pb, Cu, Ni and Zn concentrations. The highest amount of Cd (avg. 30%) in the nonresidual fractionswas found in the exchangeable fraction, while Cu and Zn weresignificantly associated with the organic fraction. Thecarbonate fraction contained on average 14, 18.6, 12.6, 13 and11% and the residual fraction contained on average 47, 18, 33,50 and 25% of Cd, Pb, Cu, Ni and Zn respectively. Assuming thatmobility and bioavailability of these metals are related to thesolubility of the geochemical form of the metals, and that theydecrease in the order of extraction sequence, the apparentmobility and potential bioavailability for these five metals inthe soil were: Pb > Zn > Cu > Ni > Cd. The mobility indexes ofcopper and nickel correlated positively and significantly withthe total content of metals, while mobility indexes of cadmiumand zinc correlated negatively and significantly with the totalcontent of metals.  相似文献   

11.
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.  相似文献   

12.
The concentrations, distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 30 agricultural soil and 16 vegetable samples collected from subtropical Shunde area, an important manufacturing center in China. The total PAHs ranged from 33.7 to 350 μg/kg in soils, and 82 to 1,258 μg/kg in vegetables. The most abundant individual PAHs are phenanthrene, fluoranthene, chrysene, pyrene and benzo(b)fluoranthene for soil samples, and anthracene, naphthalene, phenanthrene, pyrene and chrysene for vegetable samples. Average vegetable–soil ratios of total PAHs were 2.20 for leafy vegetables and 1.27 for fruity vegetables. Total PAHs in vegetable samples are not significantly correlated to those in corresponding soil samples. Principal component analyses were conducted to distinguish samples on basis of their distribution in each town, soil type and vegetable specie. Relatively abundant soil PAHs were found in town Jun’an, Beijiao, Chencun, Lecong and Ronggui, while abundant vegetable PAHs were observed in town Jun’an, Lecong, Xingtan, Daliang and Chenchun. The highest level of total PAHs were found in vegetable soil, followed by pond sediment and “stacked soil” on pond banks. The PAHs contents in leafy vegetables are higher than those in fruity vegetables. Some PAH compound ratios suggest the PAHs derived from incomplete combustion of petroleum, coal and refuse from power generation and ceramic manufacturing, and paint spraying on furniture, as well as sewage irrigation from textile industries. Soil PAHs contents have significant logarithmic correlation with total organic carbon, which demonstrates the importance of soil organic matter as sorbent to prevent losses of PAHs.  相似文献   

13.
Air pollution induced changes were observed both in plant communities and in soil chemistry in forest ecosystems near the nickel-copper smelter in the Kola Peninsula, Russia. All measured forest plant community parameters describing their floristic composition and structure were affected by pollution. Heavy metals were significantly concentrated in organic horizons of forest soils. The concentrations of ammonium acetate-extractable nickel and copper in organic horizons near the smelter were approximately two orders of magnitude higher than the background levels in the region. Based on pH values, air pollution has not resulted in a detectable topsoil acidification near the smelter. However, concentrations of extractable magnesium, potassium and nitrogen in organic horizons tended to be lower towards the smelter. The spatial variability of data obtained results in necessity of the two complementary, macroscopic and microscopic, approaches to ecosystem investigation. The macroscopic approach better revealed the influence of pollution. The ordination of the major species diversity indexes was highly related to soil properties, suggesting that the content of heavy metals and nutrients is the best soil related predictor of species diversity in polluted areas. Besides direct input of pollutants from the atmosphere, soil contamination and nutritional disturbance contribute significantly to the observed vegetation damage in subarctic forest ecosystems.  相似文献   

14.
Study of trace elements in wet atmospheric precipitation in Tehran,Iran   总被引:1,自引:0,他引:1  
In this study, measurements of the trace metals Zn, Cd, Cr, Ni, Pb, Cu, Fe and Al were performed on 53 wet atmospheric precipitation samples (snow and rainwater) collected at a central site of Tehran. Samples were collected using a bulk sampler equipped with a high-density polyethylene funnel from November to May in 2011 and 2012 on the roof of a building in the city centre. Trace metals in the filtered samples were measured with ICP-MS. Statistical analysis of the results revealed that Al, which is principally a crustal-derived element, was the highest mean measured concentration. The pH ranged from 4.2 to 7.1 with a mean value of 5.1. Crustal enrichment factors (EFc) related to the relative abundance of elements in crustal material was calculated using Al as reference crustal. EFc calculations indicated that samples were not enriched with Fe and Cr but were, fairly to extremely, enriched with Zn, Cd, Ni, Pb and Cu. Factor component analysis with varimax-normalized rotation was conducted to find the probable sources of the measured species. This resulted in two factors with eigenvalues greater than unity. Factor 1 showed an anthropogenic source, mostly industrial combustion and local traffic emissions, for Zn, Cd, Ni, Pb, and Cu while factor 2 showed a crustal contribution for Al, Fe and Cr.  相似文献   

15.
Fractionation of soil phosphorus (P) can provide useful information for assessing the risk of soil P as the potential sources of eutrophication in aquatic systems. Little information exists on P forms in paddy soils of Isfahan Province in central Iran, where P fertilizers have been continuously applied for at least 45 years. The objectives of this study were to investigate concentrations and proportions of P forms in paddy soils and correlate the content of P forms with basic soil properties. Soil samples from three paddy sites were obtained, and soil P forms were determined by a modified Hedley fraction method. Results show that the total P concentrations ranged from 288 to 850 mg kg?1 and were enriched in site 1. In all sites, the rank order of P fractions was HCl-P (CARB-P)?>?residual-P (RES-P)?>?NaOH-P (Fe-Al-P)?>?KCl-P (EXCH-P), indicating that Ca compounds are the main soil components contributing to P retention in these calcareous paddy soils. The EXCH-P represented on average?<?1 % of the total P, while the Fe-Al-P ranged 3.3–18 %. The CARB-P showed considerable contribution (63.6–85.6 %) to the total P. The Pearson correlation matrix indicated that Fe-Al-P only was positively correlated with total P, but did not show any significant correlations with other soil geochemical properties. Calcium-bound P fraction was significantly correlated with the clay, silt, cation exchange capacity, and total P.  相似文献   

16.
17.
There is a growing concern over the potential accumulation of heavy metals in soils owing to rapid industrial and urban development and increasing reliance on agrochemicals in the last several decades. These metals can infiltrate through the soil thereby causing groundwater pollution. Surface soil samples (5 to 15 cm) collected from southeastern part of Ranga Reddy district were analyzed for 14 heavy metals (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, V, Y, Zn and Zr) using Philips PW 2440 X-ray fluorescence spectrometer. Results for heavy and trace elements are reported for the first time in soils for this region. The contamination of the soils was assessed on the basis of enrichment factor (EF), geoaccumulation index (I (geo)), contamination factor and degree of contamination. The results reveal that variations in heavy element concentrations in the soil analyzed have both geogenic and anthropogenic contribution, due to the long period of constant human activities in the study area. The concentration of the metals Ba, Rb, Sr, V, Y and Zr were interpreted to be mainly inherited from parent materials (rocks) and the As, Co, Cr, Cu, Mo, Ni, Pb and Zn concentrations show contribution from geogenic and anthropogenic sources. The major element variations in soils are determined by the composition of the parent material predominantly involving granites.  相似文献   

18.
The concentrations of seven heavy metals (HMs) in jujube samples collected from Hetian region (HTR), Hami region (HMR), Erkesu region (ESR), Bayikuleng region (BLR), and Turpan region (TUR) were determined by inductively coupled mass spectrometry (ICP-MS). The accuracy and precision of the analytical method were confirmed by the certified reference material (GBW 07605). In general, the concentration of iron was higher than those of the other six metals in the investigated jujube samples. The Hazard Quotient (HQ) and Hazard Index (HI) were calculated to evaluate the noncarcinogenic health risk from individual metal and combined metals due to the dietary intakes via consumption of jujube. Both HQ and HI levels were far below 1, suggesting no noncarcinogenic risks for Xinjiang adults under the current consumption rates of the jujubes. Among the jujubes from five different regions, BLR jujube had the highest HQ and HI. Fe and As were the most concerning HMs in the investigated jujube samples due to their higher relative contributions to HIs.  相似文献   

19.
20.
In this study, the concentrations of lead, cadmium, and chromium in lipstick samples were evaluated. The samples were from different brands and produced in different countries. The average lead, cadmium, and chromium concentrations in all lipstick samples were 1.851, 0.017, and 4.300 mg kg?1 ww, respectively. There was a significant difference in the concentrations of lead, cadmium, and chromium among the brands (p?<?0.05). The concentrations of the measured elements in the brands did not exceed the values of the international standards provided for lipstick. The values of hazard quotient (HQ), health risk index (HI), relative intake index (RII), and estimated daily intake (EDI) indices were calculated. The results of the HQ and HI indices showed that in more than 50% of the lipstick brands, there is a potential threat to consumer health due to the presence of these elements in lipstick. Therefore, it can be concluded that, due to the simultaneous use of lipstick with other types of cosmetics and hence the potential exposure of consumers to toxic elements through all cosmetics, continuous monitoring of the concentrations of these elements in these types of products is necessary to avoid potential health risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号