首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为研究庞庄煤矿张小楼煤矸石堆场淋溶液对其场地和周边地表水、地下水水质影响情况,围绕煤矸石堆场及周边采集13组水样做分析比对。结果表明,煤矸石堆场淋溶液对周边地表水体形成普遍污染,且污染物浓度随着污染距离增加逐步降低,一般化学污染指标主要包括溶解性总固体、硫酸盐、铁、锰、氨氮等,毒理学污染指标包括亚硝酸盐、氟化物、砷,超标倍率约为0.02~5.36。受距离及成井深度等因素影响,地下水体未遭受淋溶液明显的污染和影响。  相似文献   

2.
The Qaraaoun Reservoir (impoundment of the River Litani) is the only artificial surface water body in the country, Lebanon. Earlier study on the water quality of the Qaraaoun Reservoir identified three water quality zoning with a central distinct zone suitable for multipurpose water usage. The objective of this study was to extend the earlier work by considering the total metal content of reservoir bed sediments and hence to evaluate factors that control metal deposition or capture. Water samples were collected from 15 sampling sites and sediment samples were simultaneously collected from 9 sites. Water parameters analyzed were pH, Eh, DO and temperature. Sediment samples were dried and sieved and sediment < 75 μ m was retained for analysis. Sediments were subjected to a stepwise heating process with aqua regia to extract the metals, and their content in sediments determined by ICP-MS. The sediment data revealed higher metal contents where the river entered the reservoir which matched higher concentrations of water parameters at the influx site. Regression analysis of total metals in sediments with distance from the river Litani influx point to the dam revealed a log trend for Fe, Cr and Ni, whereas, the concentrations of Cu, Zn, Cd, Pb were better described by a polynomial regression. Three sediment zones were identified: entrance, oxidation (central) and reducing (near dam) zones. Sediment contents of Zn, Cu and Pb correlated with organic content, whereas sediment Cr and Ni were associated with iron. It was concluded that sediments act as a sink for metals and the deposition of metals is primarily related to sediment organic content and the level of dissolved oxygen in water.  相似文献   

3.
The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly proposed environmental water quality index (EWQI) lead to better trend in the impact of coal and coal seam gas mining activities on surface water quality when compared to the upstream reference water samples. Metal content limits were based on the impact points assigned by the Agency for Toxic Substances and Disease Registry, USA. For environmental and health impact assessment, the approach used in this study can be applied as a model to provide a basis to assess the anthropogenic contribution from the industrial and mining activities on the environment.  相似文献   

4.
Heavy metal contents and contamination characteristics of the water and sediment of the Khoshk River, Shiraz, Southwest Iran were investigated. The abundance of heavy metals decreases as Zn > Mn > Cr > Ni >Pb > Cu > Cd in water samples and Mn > Cr > Pb > Ni > Zn > Cu > Cd in sediments, respectively. Based on the enrichment factor and geoaccumulation index values, sediments were loaded with Cr, Zn, Pb, Cu, and Cd. Pearson correlation matrix as well as cluster and principal components analyses and analysis of variance were implemented on data from sampling sites. Based on the locations of sampling sites in clusters and variable concentrations at these stations, it was concluded that municipal, industrial, and domestic discharges in the Shiraz urban area strongly affected heavy metals concentrations in the Khoshk River water and sediment. Results obtained from principal components analysis of sediment samples showed that the high concentration of Ni was mainly from natural origin, related to the composition of parent rocks, while the elevated values of Cr, Zn, Pb, Cd, and Cu were due to anthropogenic activities.  相似文献   

5.
A study was carried out in a part of Palar and Cheyyar river basin to evaluate the current status of iron, manganese, zinc and atrazine concentrations, their origin and distribution in groundwater. Groundwater samples were collected during post-monsoon (March 1998 and February 1999) and pre-monsoon (June 1999) periods from 41 sampling wells distributed throughout the study area. The groundwater samples were analyzed for trace metals using AAS and atrazine using HPLC. The concentration of the trace elements in groundwater is predominant during pre-monsoon period. Distribution pattern indicates that the concentration of these elements increases from west to northeast and towards Palar river. Lower concentrations in the central part may be due to recharge of fresh water from the lakes located here. During most of the months, as there is no flow in Palar river, the concentrations of trace elements in groundwater are high. Drinking water standards indicate that Mn and Zn cross the permissible limit recommended by EPA during the pre-monsoon period. A comparison of groundwater data with trace element chemistry of rock samples shows the abundance of trace elements both in the rock and water in the order of Fe > Mn > Zn and Fe > Zn > Mn. This indicates that iron in groundwater is derived from lithogenic origin. Further, Fe, Mn and Zn have good correlation in rock samples, while it is reverse in the case of water samples, indicating the non-lithogenic origin of Mn and Zn. Atrazine (a herbicide) was not detected in any of the groundwater samples in the study area, perhaps due to low-application rate and adsorption in the soil materials.  相似文献   

6.
The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range <0.7-88.3 microg L(-1) in groundwater, 41.1-90.7 microg L(-1) in thermal spring water and 0.4-13.2 microg L(-1) in stream water, whereas As concentrations in stream sediments varied between 2.0-21.9 mg kg(-1). Four out of 31 groundwater samples exceeded the EC standard of 10 microg L(-1). The survey revealed an enrichment in both surface and groundwater hydrological systems in the northern part of the area (average concentrations of As in groundwater, stream water and stream sediment: 8.0 microg L(-1), 8.8 microg L(-1) and 15.0 mg kg(-1) respectively), in association with the volcanic bedrocks, while lower As concentrations were found in the eastern part (average concentrations in groundwater, stream water and stream sediment: 2.9 microg L(-1), 1.7 microg L(-1) and 5.9 mg kg(-1) respectively), which is dominated by ophiolitic ultramafic formations. The variation of As levels between the different parts of the study area suggests that local geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.  相似文献   

7.
海南昌江石碌钴铜矿尾矿库重金属污染环境现状调查   总被引:3,自引:0,他引:3  
为了解海南省昌江县石碌镇钴铜矿尾矿库环境特点,分别采集了矿砂、背景土壤、废水、纳污水体和植物进行分析。结果表明,钴铜矿尾矿库的土壤受As和Cu污染严重,周边土壤受到不同程度的重金属污染;废水经过尾矿库沉淀处理后,SS、As、Cu、Co、Fe等监测指标均有所降低,尾矿库起到沉淀吸附处理作用;纳污河流石碌河水质良好;尾矿库内自然生长的菖蒲和水竹均受到重金属不同程度污染,尾矿库内的甘蔗中Cr、Pb含量均超过食品中污染物限量标准,表明尾矿库内不宜种植可食用作物。  相似文献   

8.
Identifying the possible sources of potential harmful metals in groundwater systems plays a crucial role in evaluating the potential risks to residents and local plant cover. An attempt was made to define the origin of Al, Cd, Cu, Fe, Mo, Ni, and Pb in groundwater using multivariate statistic approaches [principal component analysis (PCA), hierarchical cluster analysis], and tailings sequential extraction by the method of Tessier et al. The concentrations of studied elements were measured in 42 samples collected from 15 stations surrounding and downward the tailings dam of Miduk Copper Complex, central province of Kerman, Iran. According to the PCA results, confirmed by cluster dendrogram and metal content measurement of tailings sequential extracts, two components accounting for nearly 73% of the total variance, controlled the heavy metal variability and classified the possible source of groundwater contamination into two categories: (1) upper seepage which controls the variability of Cd, Cu, Fe, Ni, and Pb and (2) toe seepage of tailings dump affecting on Mo and Al concentration in downstream groundwater.  相似文献   

9.
This study first presents the spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a nonferrous metal mine area in China. Unconfined groundwater was polluted by Pb, Zn, As, and Cu, in order, while confined karst water in the mines showed pollution in the following sequence: Zn, Cd, Cu, Pb, and As. Pollution by Pb was widespread, while Zn, As, Cu, and Cd were found to be high in the north–central industrial region and to decrease gradually with distance from smelters and tailings. Vertically, more Pb, Zn, Cu, and Cd have accumulated in shallow Quaternary groundwater, while more As have migrated into the deeper fracture groundwater in the local discharge area. Zn, Cd, and Cu concentrations in groundwater along the riverside diminished owing to reduced wastewater drainage since 1977, while samples in the confluence area were found to have increasing contents of Pb, Zn, As, Cu, and Cd since industrialization began in the 1990s. Sources of heavy metals in groundwater were of anthropogenic origin except for Cr. Pb originated primarily from airborne volatile particulates, wastewater, and waste residues and deposited continuously, while Zn, Cd, and Cu were derived from the wastewater of smelters and leakage of tailings, which corresponded to the related soil and surface residue researches. Elevated As values around factories might be the result of chemical reactions. Flow patterns in different hydrogeological units and adsorption capability of from Quaternary sediments restricted their cross-border diffusion.  相似文献   

10.
The purpose of this paper are to determine the concentration of heavy metals namely cadmium (Cd), copper (Cu) and lead (Pb) in water and sediment; and to investigate the effect of sediment pH and sediment organic matter on concentration of cadmium, copper and lead in sediment at oxidation fraction. For this purpose the concentration of heavy metals were measured in water and sediments at 15 sites from Tasik Chini, Peninsular Malaysia. The sequential extraction procedure used in this study was based on defined fractions: exchangeable, acid reduction, oxidation, and residual. The concentration of heavy metals in residual fraction was higher than the other fractions. Among the non-residual fractions, the concentration of heavy metals in organic matter fraction was much higher than other fractions collected from all sampling sites. The pH of the sediment in all sites was acidic. The mean pH ranges from 4.8 to 5.5 with the higher value observed at site 15. Results of organic matter analysis showed that the percentage of organic matter present in sediment samples varies throughout the lake and all sites of sediments were relatively rich in organic matter ranging from 13.0% to 34.2%. The highest mean percentage of organic matter was measured at sampling site 15, with value of 31.78%.  相似文献   

11.
This study investigates the application of models traditionally used to estimate erosion and sediment deposition to assess the potential risk of water quality impairment resulting from metal-bearing materials related to mining and mineralization. An integrated watershed analysis using Geographic Information Systems (GIS) based tools was undertaken to examine erosion and sediment transport characteristics within the watersheds. Estimates of stream deposits of sediment from mine tailings were related to the chemistry of surface water to assess the effectiveness of the methodology to assess the risk of acid mine-drainage being dispersed downstream of abandoned tailings and waste rock piles. A watershed analysis was preformed in the Patagonia Mountains in southeastern Arizona which has seen substantial mining and where recent water quality samples have reported acidic surface waters. This research demonstrates an improvement of the ability to predict streams that are likely to have severely degraded water quality as a result of past mining activities.  相似文献   

12.
Hyalella azteca (Crustacea: Amphipoda), water and sediments from 12 circum-neutral lakes between Sudbury and North Bay in Ontario, Canada were sampled in August 1998 and analyzed for 10 metals including Cu, Zn, Cd, Ni, Pb, Co, Mo, V, Ba and Ti. Statistical analyses showed that concentrations of the metals in H. azteca, water and sediment differed significantly (ANOVA, P<0.05) among lakes (except for Zn and Pb in H. azteca and Mo in water). There was a trend of declining metal concentration, especially for Cu, Ni and Co (in water, Hyalella and sediment), with distance from the smelters indicating the reduced impact of atmospheric pollution. Metal concentrations of lakes (water) in the Sudbury area were found to be lower compared to data from the 1970s and 1980s indicating an improvement in water quality. Metal concentrations in field-collected amphipods compared favorably with those measured in the laboratory in animals exposed to deep-water sediments, provided metal concentrations were not extremely low (e.g., Pb) and that water chemistry differences (e.g., pH) were taken into account for some metals (especially Cd). In general bioaccumulation of metals in H. azteca was predicted better from surface water than from sediment total metal.  相似文献   

13.
This work centered on a 1-year evaluation campaign of point source pollution from a sewage treatment oxidation pond and its receiving stream. Water samples were collected from the sewage treatment oxidation pond and the receiving stream during July 2002 and June 2003. Concentrations of heavy metals were determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) after a triple acid digestion of samples using open beaker method. Generally, the results showed high levels of toxic metals such as Cd, Pb, As, Al, Cr, Mn, Co, and Fe in the influent and effluent samples as well as in the receiving stream. The annual mean concentration of metals in the sewage samples ranged from 11.90 to 16.05, 64.96 to 88.27, 38.91 to 76.35, 17.46 to 24.45 mug/L for Cd, As, Pb, Co, and 4.31 to 8.77, 1.71 to 2.45, 0.46 to 0.74 and 13.82 to 20.47 mg/l for Al, Cr, Mn and Fe, respectively; while in the receiving stream, the concentrations were between 6.89 to 10.45, 35.50 to 59.26, 22.85 to 35.94, 11.33 to 18.83 mug/l for Cd, As, Pb, Co, and 1.99 to 3.49, 1.35 to 2.08, 0.21 to 0.48, and 8.93 to 14.15 mg/l for Al, Cr, Mn and Fe, respectively. The discharge of the effluent from the sewage pond into the receiving stream has therefore led to increase in the concentrations of some heavy metals downstream, thus impacting the receiving stream negatively and could pose a serious health hazard to aquatic ecosystems and humans particularly for rural dwellers and peasant farmers downstream that utilize the water from the receiving stream for various domestic and agricultural purposes untreated.  相似文献   

14.
The Tuul River flows through the Ulaanbaatar basin of Mongolia and is the main source of water for the capital city, Ulaanbaatar. The Tuul catchment can be divided into three parts around Ulaanbaatar (upper, middle, and lower), according to the extent of urbanization. Sixteen surface water and groundwater samples were collected to evaluate present-day water quality and 34 stream sediment samples taken to examine their geochemical composition in relation to provenance and to assess the impact of urban activity on heavy metal accumulation. Groundwater quality in the upper and central water sources was adequate, but high concentrations of NO 3 ? were found in the lower water source. Heavy metal concentrations in the sediments are evaluated by comparison with average upper continental crust (UCC) values, coupled with ecological risk assessment by reference to sediment quality guidelines (SQG). The results show average abundances of potentially toxic metals such as As, Pb, Zn, Cu, Ni, Cr, and V are higher in the middle part (within the city) than in the upper and lower parts. However, all three parts show depletion in some chalcophile and high field strength elements (Cu, Ni, Cr, Sr, Nb, Zr, Th, Sc) relative to UCC, indicating that the river sediments were derived from a highly felsic crustal source. The assessment using SQG shows As and Cr are present in levels that cause adverse aquatic biological effects. Although concentrations of Pb, Zn, Cu, and Ni are generally below their respective threshold effect levels, in the middle reaches, values increase and border on the probable effect level. This suggests significant anthropogenic contamination in the urban areas, increasing values above a naturally low regional background.  相似文献   

15.
Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute <1% of total loads. Even if background water quality is achieved upstream in Strawberry Creek, fracture metal loads would be <5%. Fracture loads could increase substantially and cause stream water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.  相似文献   

16.
The present study was conducted to investigate the contamination of water, sediments, and fish tissues with heavy metals in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Water, sediments, and fish (Shizothorax plagiostomus) samples were collected from September 2012 to January 2013 at three different sites (upstream site at Sharigut, sewage site at Timergara, and downstream site at Sadoo) of river Panjkora. The concentrations of heavy metals in water were in the order Zn?>?Cu?≈?Pb?>?Ni?≈?Cd with mean values of 0.30, 0.01, 0.01, 0.0 and 0.0 mg/l, respectively, which were below the maximum permissible limits of WHO for drinking water. In sediments, heavy metals were found in the order Cu?>?Zn?>?Ni?>?Pb?>?Cd with mean concentrations of 50.6, 38.7, 9.3, 8, and 0.4 mg/kg, respectively. Ni and Cd were not found in any fish tissues, but Zn, Cu, and Pb were detected with the mean concentration ranges of 0.04–1.19, 0.03–0.12, and 0.01–0.09 μg/g, respectively. The present study demonstrates that disposal of waste effluents causes a slight increase in the concentration of heavy metals in river Panjkora as revealed by variation in metal concentrations from upstream to downstream site. Sewage disposal was also found to change physicochemical characteristics of Panjkora water. At present, water and fish of river Panjkora are safe for human consumption, but the continuous sewage disposal may create problems in the future.  相似文献   

17.
Leachate and groundwater samples were collected from Gazipur landfill-site and its adjacent area to study the possible impact of leachate percolation on groundwater quality. Concentration of various physico-chemical parameters including heavy metal (Cd, Cr, Cu, Fe, Ni, Pb and Zn) and microbiological parameters (total coliform (TC) and faecal coliform (FC)) were determined in groundwater and leachate samples. The moderately high concentrations of Cl, NO 3, SO2− 4, NH+ 4, Phenol, Fe, Zn and COD in groundwater, likely indicate that groundwater quality is being significantly affected by leachate percolation. Further they proved to be as tracers for groundwater contamination. The effect of depth and distance of the well from the pollution source was also investigated. The presence of TC and FC in groundwater warns for the groundwater quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demand for the proper management of waste in Delhi.  相似文献   

18.
石河子市地下水环境背景值   总被引:11,自引:0,他引:11  
采集并测定了石河子市19个地下水背景水样,分别确定了该市潜水和承压—自流水中K+、Na+、Ca2+、Mg2+、Cl-、SO、HCO、NO、F-、总硬度、矿化度、可溶性SiO2、COD、pH、Cu、Pb、Zn、Cd、Mn、V、Li、Mo、Se、Hg、I、As、Cr+5、C6H5OH、CN-、ABS的环境背景值.  相似文献   

19.
This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18–30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2–4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.  相似文献   

20.
The UK is legally required by the EU Water Framework Directive (WFD) to improve the environmental quality of inland and coastal waters in the coming years. Historic metal mine sites are recognised as an important source of some of the elements on the WFD priority chemicals list. Despite their contamination potential, such sites are valued for their heritage and for other cultural and scientific reasons. Remediating historic mining areas to control the contamination of stream waters, whilst also preserving the integrity of the mine site, is a challenge but might be achieved by novel forms of remediation. In this study, we have carried out environmental monitoring at a historic, and culturally-sensitive, lead-silver mine site in southwest England and have undertaken a pilot experiment to investigate the potential for a novel, non-invasive remediation method at the site. Concentrations of Pb and Zn in mine spoil were clearly elevated with geometric mean concentrations of 6,888 and 710 microg g(-1), respectively. Mean concentrations of Pb in stream waters were between 21 and 54 microg l(-1), in exceedance of the WFD environmental quality standard (EQS) of 7.2 microg l(-1) (annual average). Mean Zn concentrations in water were between 30 and 97 microg l(-1), compared to the UK EQS of 66.5 microg l(-1) (average). Stream sediments within, and downstream from, the mining site were similarly elevated, indicating transport of mine waste particles into and within the stream. We undertook a simple trial to investigate the potential of hydroxyapatite, in the form of bonemeal, to passively remove the Pb and Zn, from the stream waters. After percolating through bonemeal in a leaching column, 96-99% of the dissolved Pb and Zn in stream water samples was removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号