首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean–wheat, maize–wheat, and rice–wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean–wheat, maize–wheat, and rice–wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO4-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.  相似文献   

2.
Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p?<?0.01), available P (p?<?0.01), cation exchange capacity (p?<?0.05), and organic carbon (p?<?0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p?<?0.01), pH, and clay content (p?<?0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.  相似文献   

3.
Disposal of hair wastes at landfills causes nitrate leaching to ground water, and use of the waste as fertiliser could be a viable option. This study was to determine elemental composition of major hair types in South Africa and their nitrogen (N) and phosphorus (P) release in soil. Wastes of African, White and Indian hair were obtained from local salons and analysed for carbon (C), N and sulphur (S) with the Leco CNS analyzer, and P, bases, aluminium (Al) and micronutrients, with the ICP. We also conducted an incubation study to determine changes in mineral N and P in soil. Hair wastes were added to soil at increasing rates based on N, incubated at 25 °C with destructive sampling after 0, 28, 56 and 84 days and pH, ammonium-N, nitrate-N and extractable P measured. All data were subjected to analysis of variance. Indian and White hair had higher N than African. White hair had higher C and lower potassium (K) than those of other types. The Fe levels in hair were in the order White > African > Indian, whilst those of Al were African > Indian > White. African hair had higher calcium (Ca), manganese (Mn), zinc (Zn) and cobalt (Co) than the other types. Ammonium-N and nitrate-N releases were in the order: Indian > African > White, especially at higher rates. Ammonium-N increased in the first 28 days and declined thereafter, when nitrate-N increased and pH decreased. The findings implied that hair types differ in elemental composition and nitrogen release in soil, with implications on pollution and soil fertility.  相似文献   

4.
Advances in process-based modelling of loads of nitrogen and phosphorus carried by rivers have created new possibilities to interpret time series of water quality data. We examined how model runs with constant anthropogenic forcing can be used to estimate and filter out weather-driven variation in observational data and, thereby, draw attention to other features of such data. An assessment of measured and modelled nutrient concentrations at the outlets of 45 Swedish rivers provided promising results for total nitrogen. In particular, joint analyses of observational data and outputs from the catchment model S-HYPE strengthened the evidence that downward trends in nitrogen were due to mitigation measures in agriculture. Evaluation of modelled and observed total phosphorus concentrations revealed considerable bias in the collection or chemical analysis of water samples and also identified weaknesses in the model outputs. Together, our results highlight the need for more efficient two-way communication between environmental modelling and monitoring.  相似文献   

5.
The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0–15, 15–30, 30–45 and 45–60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.  相似文献   

6.
7.
Experiments were conducted for the study of nutrient budget in ten farmer's ponds (0.2–0.5 ha) in Orissa, India with a mean water depth of 1.0–1.2 m. Scampi (Macrobrachium rosenbergii) were stocked in these ponds at stocking density of 3.75–5.0/m2. The average initial body weight of scampi was 0.02 mg. The culture period was for 4 months. Feed was the main input. Total feed applied to these ponds ranged from 945 to 2261 kg pond/cycle (crop). The feed conversion ratio varied 1.65 to 1.78. In addition to feed, rice straw, urea, and single super phosphate were applied to these ponds in small amounts for plankton production. At harvest time, the average weight of scampi varied from 60–90 g. The budget showed that feed was the major input of nitrogen (N), phosphorus (P), and carbon in these ponds. The inorganic fertilizer (urea and single super phosphate), organic fertilizer (rice straw and yeast extract), and inlet water, either from the initial fills or from rainwater, were the source of all other N, P, and organic carbon (OC) to these ponds. Total N applied to these ponds through all these inputs ranged from 44.45 to 103.98 kg N per crop, 12.23 to 28.79 kg P per crop, and from 381.54 to 905.22 kg OC per crop, respectively. Among all the inputs, feed alone accounted for 95.34 % N, 97.98 % P, and 94.27 % OC, respectively. Recovery of 16.34 to 38.66 kg N (average 29.27 kg), 1.28 to 3.02 kg P (average 2.29 kg), and 63.21 to 149.51 kg OC (average 113.20 kg), respectively, by the scampi harvest were observed in these ponds. Thus, harvest of scampi accounted for recovery of 35.18 to 39.01 (average 36.85 %) of added N, 10.09 to 10.97 (average 10.44 %) of added P, and 7.57 to 17.12 (average 16.34 %) of added OC, respectively.  相似文献   

8.
The compositions, spatial distributions, seasonal variations and ozone formation potential (OFP) of volatile organic compounds (VOCs) were investigated in the atmosphere of Haicang District, Xiamen City, Southeast China. Twenty-four types of VOCs were measured in this study, and ethanol, methylene chloride, toluene, ethyl acetate and isopropyl alcohol were the abundant species based on concentration rank. The concentrations of total VOCs (TVOCs) in industrial areas were higher than those in residential and administrative areas and background site. For industrial areas, the TVOCs concentrations in summer were higher than those in winter, which might result from higher emissions from industrial activities because of stronger evaporation in summer. In contrast, non-industrial areas showed higher concentrations in winter due to the unfavorable meteorological conditions. The spatial distribution of BTEX (benzene, toluene, ethylbenzene and xylene) followed the order of industrial areas > residential and administrative areas > background site, and the concentrations in summer were lower than those in winter for most sites. The high ratios (8.9-14.0) of T/B in this study indicated that industrial emissions were the main sources in this district. X/B ratios were used to assess the ages of air parcels and provided evidence of the transport of air parcels among these sites. Total OFP (TOFP) showed the trend of increase with the increase of TVOCs, and toluene was found as the major contributor to TOFP.  相似文献   

9.
The study on the spatial distribution of forest soil organic carbon (SOC) is of great significance for accurate assessment of carbon storage in forest ecosystems. In the present study, by taking eight kinds of forest soils of Mountain Lushan in the subtropical area as the research object, we studied the spatial distribution characteristics of SOC in this mountainous area. The results showed that the SOC content and SOC density (SOCD) of main forest types in the Mountain Lushan were lower than the national and the world average. The soil layer of Lushan forest was thinner, and the SOC and active SOC (ASOC) contents of different forest types and SOCDs are the highest in the surface soil. SOCD of the topsoil accounts for 32.64–54.03% of the total SOCD in the whole soil profile. Surface litter is an important source of SOC, and the different vegetation types are the important reason for the different spatial distribution of SOC in this area. Soil SOC contents in the high-altitude forest (bamboo forest, deciduous broadleaf forest, Pinus taiwanensis forest, evergreen-deciduous forest, and coniferous-broadleaved mixed forest) were higher than those in the low-altitude forest (evergreen broadleaf forest, shrub, and Pinus massoniana forest). However, the difference in SOC content exhibited at the altitude gradient is significantly lower than that in SOC in the soil profile. This indicates that both soil depth and elevation are the important factors that affected SOC distribution. However, the influence of soil depth on spatial distribution of SOC may be more complex than that of altitude. Vegetation types and soil properties are the main reasons for the large differences of reduction rate in the contents of SOC and ASOC.  相似文献   

10.
A 2-year monitoring study was conducted to estimate nitrogen deposition to a typical red soil forestland in southeastern China. The dry deposition velocities (V(d)) were estimated using big leaf resistance analogy model. Atmospheric nitrogen dry deposition was estimated by combing V(d) and nitrogen compounds concentrations, and the wet deposition was calculated via rainfall and nitrogen concentrations in rainwater. The total inorganic nitrogen deposition was 83.7 kg ha(-1) a(-1) in 2004 and 81.3 kg ha(-1) a(-1) in 2005, respectively. The dry deposition contributed 78.6% to total nitrogen deposition, in which ammonia was the predominant contributor that accounted for 86.1%. Reduced nitrogen compounds were the predominant contributors, accounting for 78.3% of total nitrogen deposition. The results suggested that atmospheric inorganic nitrogen could be attributed to intensive agricultural practices such as excessive nitrogen fertilization and livestock production. Therefore, impacts of atmospheric nitrogen originated from agriculture practices on nearby forest ecosystems should be evaluated.  相似文献   

11.
Monte Carlo simulations were performed using the GEANT4 code for the investigation of γ-ray absorption in water in different spherical geometries and of the efficiency of a NaI(Tl) detector for different radionuclides in the aquatic environment. In order to test the reliability of these simulations, experimental values of the NaI(Tl) detector efficiency were deduced and seem to be in good agreement with the simulated ones. In addition, using the simulated efficiency, an algorithm was developed to determine the minimum detectable activity in becquerels per cubic meter in situ as a function of energy for typical freshwater and seawater spectra.  相似文献   

12.
Atmospheric dry deposition is an important nitrogen (N) input to farmland ecosystems. The main nitrogen compounds in the atmosphere include gaseous N (NH3, NO2, HNO3) and aerosol N (NH4 +/NO3 ?). With the knowledge of increasing agricultural effects by dry deposition of nitrogen, researchers have paid great attention to this topic. Based on the big-leaf resistance dry deposition model, dry N deposition velocities (V d) in a typical red soil agro-ecosystem, Yingtan, Jiangxi, Southeastern China, were estimated with the data from an Auto-Meteorological Experiment Station during 2004–2007. The results show that hourly deposition velocities (V dh) were in the range of 0.17–0.34, 0.05–0.24, 0.57–1.27, and 0.05–0.41 cm/s for NH3, NO2, HNO3, and aerosol N, respectively, and the V dh were much higher in daytime than in nighttime and had a peak value around noon. Monthly dry deposition velocities (V dm) were in the range of 0.14–0.36, 0.06–0.18, and 0.07–0.25 cm/s for NH3, NO2, and aerosol N, respectively. Their minimum values appeared from June to August, while their maximum values occurred from February to March each year. The maximum value for HNO3 deposition velocities appeared in July each year, and V dm(HNO3) ranged from 0.58 to 1.31 cm/s during the 4 years. As for seasonal deposition velocities (V ds), V ds(NH3), V ds(NO2), and V ds(aerosol N) in winter or spring were significantly higher than those in summer or autumn, while V ds(HNO3) in summer were higher than that in winter. In addition, there is no significant difference among all the annual means for deposition velocities (V da). The average values for NH3, NO2, HNO3, and aerosol N deposition velocities in the 4 years were 0.26, 0.12, 0.81, and 0.16 cm/s, respectively. The model is convenient and feasible to estimate dry deposition velocity of atmospheric nitrogen in the typical red soil agro-ecosystem.  相似文献   

13.
Earlier studies by the authors on English soils under grassland strongly supported their hypothesis that soil/plant systems have naturally evolved to conserve nitrogen (N) by having a close match between the dynamics of mineral-N production in soils and the dynamics of plant N requirements. Thus, maximum mineral-N production in soils occurred in spring when plant N requirements were greatest and were very low in mid to late summer. Low temperature and a high C:N ratio of senescing material helped to conserve N in winter, but mobile N was associated with pollution inputs. We test the hypothesis that under the much more arid conditions of Pakistan, soil/plant systems naturally have evolved to conserve mineral-N, especially over the very dry and cooler months between October and February. When soils from a grassland site were incubated at ambient temperatures after removal of plant roots and exclusion of atmospheric N inputs, there was consistent evidence of immobilization of nitrate and immobilization and possibly volatilization of ammonia/ammonium. In the wetter months of July and August, the soil at 0–10 cm depth showed no evidence of significant ammonium-N production in July and only small ammonium production at 10–20 cm depth in August, but was associated with significant nitrate-N immobilization in August. Nitrate leaching only appeared likely towards the end of the rainy season in September. The results strongly suggest that, under grass, the retention of atmospheric N inputs over the long dry periods is regulating the pools of available N in the soils, rather than the N produced by mineralization of soil organic matter.  相似文献   

14.
This long-term study, performed during the years 2003–2005 and 2008–2009, investigated the carbon (C), nitrogen (N), and phosphorus (P) contents of the phyto- and zooplankton communities and the nutrient regime of Cabo Frio Bay, SE Brazil. The information intends to serve as baseline of the plankton C, N, and P stoichiometry for the calibration of biogeochemical and ecological models in support to future findings related to the local and regional phenomena of climatic change. Cabo Frio Bay is a small semienclosed system set adjacent to a region subject to sporadic coastal upwelling. Zooplankton exhibited average annual C, N, and P contents of 11.6?±?6.9 %, 2.8?±?1.8 %, and 0.18?±?0.08 %, and phytoplankton (>20 μm) 6.8?±?6.0 %, 1.6?±?1.5 %, and 0.09?±?0.08 %, respectively. The C/N/P ratios correspond to the lowest already found to date for a marine environment. The low C contents must have been brought about by a predominance of gelatinous zooplankton, like Doliolids/ Salps and also Pteropods. Average annual nutrient concentrations in the water were 0.21?±?0.1 μM for phosphate, 0.08?±?0.1 μM for nitrite, 0.74?±?1.6 μM for nitrate, and 1.27?±?1.1 μM for ammonium. N/P ratios were around 8:1 during the first study period and 12:1 during the second. The plankton C/N/P and N/P nutrient ratios and elemental concentrations suggest that the system was oligotrophic and nitrogen limited. The sporadic intrusions of upwelling waters during the first study period had no marked effect upon the systems metabolism, likely due to dilution effects and the short residence times of water of the bay.  相似文献   

15.
Soil erosion is a serious environmental problem in Guizhou Province, which is located in the centre of the karst areas of southwestern China. Unfortunately, Guizhou Province suffers from a lack of financial resources to research, monitor and model soil erosion at large watershed. In order to assess the soil erosion risk, soil erosion modeling at the watershed scale are urgently needed to be undertaken. This study integrated the Revised Universal Soil Loss Equation (RUSLE) with a Geographic Information System (GIS) to estimate soil loss and identify the risk erosion areas in the Maotiao River watershed, which is a typical rural watershed in Guizhou Province. All factors used in the RUSLE were calculated for the watershed using local data. It was classified into five categories ranging from minimal risk to extreme erosion risk depending on the calculated soil erosion amount. The soil erosion map was linked to land use, elevation and slope maps to explore the relationship between soil erosion and environmental factors and identify the areas of soil erosion risk. The results can be used to advice the local government in prioritizing the areas of immediate erosion mitigation. The integrated approach allows for relatively easy, fast, and cost-effective estimation of spatially distributed soil erosion. It thus indicates that RUSLE-GIS model is a useful and efficient tool for evaluating and mapping soil erosion risk at a large watershed scale in Guizhou Province.  相似文献   

16.
Carbon emission reduction in the Chinese cities can make significant contributions to the mission of global emission reduction. Therefore, the promotion of low-carbon cities (LCC) in China is of great importance to achieve this mission. This paper examines the performance of practicing LCC in China by conducting a temporal-spatial evolution analysis on LCC performance. By combining the entropy weight method and the linear weighted sum method, the LCC performance score is calculated to help establish performance grades. The quartile method and the Boston matrix method are used to conduct temporal analysis and spatial analysis respectively. The data employed in this study were collected from 34 cities in China for the period from 2006 to 2018. The findings are as follows: (1) The overall LCC performance in China has been improved in recent years and the implementation of the low carbon pilot project (LCPP) has made contributions to this improvement. (2) The LCC performance of those cities in Southern China is generally better than that in Northern cities. (3) Good LCC performance cities are those economically developed cities, in which the industrial structure is dominated by low carbon industries. This study provides a holistic picture of the LCC practice in China and also provides supportive references for policymakers to make tailor-made measures to improve the LCC performance internationally.  相似文献   

17.
CaCl2-extractable soil Cd and Zn contents have been suggested as a measure of bioavailability. To investigate the ability of this measure to reflect spatial patterns of Cd and Zn concentrations in barley (Hordeum vulgare L.) in an arable field, plant and soil samples were taken from a 0.5 ha area sandy soil contaminated with Cd and Zn. Cd and Zn contents in barley and yield were spatially variable. Yield was low, which may have been caused by Zn toxicity or atrazine turnover. For Cd, CaCl2-extractable soil contents explained only 17% of the variation in Cd contents in grain, and for Zn no significant correlation was observed. Nevertheless, surface plots of CaCl2-extractable soil contents and contents of barley grain illustrated their corresponding spatial patterns. Despite the poor linear correlation between CaCl2-extractable soil-Cd and grain-Cd, a stochastic model for long term behaviour of Cd in field soils predicted observed variability in Cd contents of barley grain well from spatial variability of soil pH and organic matter content. The probabilistic model predicted behaviour of Cd in terms of probability, and was more appropriate than the deterministic approach.  相似文献   

18.
Concentration and composition of polychlorinated biphenyls (PCBs) in the typical drinking water sources in Jiangsu Province were studied by scene investigation and physical and chemical analyses as well. Total amount of PCBs in some surface water and surface microlayers exceeded the standard (20 ng/l) in the "Environmental Quality Standard of Surface Water". There were less PCBs in suspended substances and bottom mud. It reflected that there was less PCB pollution in drinking water sources in Jiangsu Province for quite a long period. The main kind of PCBs in the typical drinking water sources was dichlorobiphenyl. Monochlorobiphenyl and trichlorobiphenyl ranked next to dichlorobiphenyl. In the study of PCB distribution in drinking water sources, it was found that the concentration of PCBs in surface microlayer was higher than that in deep water. The concentration of PCBs along the Yangtze River bank was more than that in the middle of Yangtze River. PCBs in the typical drinking water sources mostly came from by-products in industrial production.  相似文献   

19.
To characterize the spatial distribution of groundwater level (GWL) and its chemistry characteristics in the low plain around the Bohai Sea, shallow groundwater depth of 130 wells were determined. Water soluble ions composition, total dissolved solid (TDS), electric conductivity (EC), total hardness (TH), total alkalinity (TA), and total salt content (TS) of 128 representative groundwater samples were also measured. Classical statistics, geostatistical method combined with GIS technique were then used to analyze the spatial variability and distribution of GWL and groundwater chemical properties. Results show that GWL, TDS, EC, TH, TA, and TS all presented a lognormal distribution and could be fitted by different semivariogram models (spherical, exponential, and Gaussian). Spatial structure of GWL, TDS, EC, TH, TA, and TS changed obviously. GWL decreased from west inland plain to the east coastal plain, however, TDS, EC, and TS increased from west to east, TH and TA were higher in the middle and coastal plain area. Groundwater chemical type in the coastal plain was SO42−·Cl—Na+ while chemical types in the inland plain were SO42−·Cl—Ca2+·Mg2+ and HCO3—Ca2+·Mg2+.  相似文献   

20.
The nonpoint source (NPS) pollution is difficult to manage and control due to its complicated generation and formation. Load estimation and source apportionment are an important and necessary process for efficient NPS control. Here, an integrated application of semi-distributed land use-based runoff process (SLURP) model, export coefficients model (ECM), and revise universal soil loss equation (RUSLE) for the load estimation and source apportionment of nitrogen and phosphorus was proposed. The Jinjiang River (China) was chosen for the evaluation of the method proposed here. The chosen watershed was divided into 27 subbasins. After which, the SLURP model was used to calculate land use runoff and to estimate loads of dissolved nitrogen and phosphorus, and ECM was applied to estimate dissolved loads from livestock and rural domestic sewage. Next, the RUSLE was employed for load estimation of adsorbed nitrogen and phosphorus. The results showed that the 12,029.06 t?a?1 pollution loads of total NPS nitrogen (TN) mainly originated from dissolved nitrogen (96.24 %). The major sources of TN were land use runoff, which accounted for 45.97 % of the total, followed by livestock (32.43 %) and rural domestic sewage (17.83 %). For total NPS phosphorous (TP), its pollution loads were 570.82 t?a?1 and made up of dissolved and adsorbed phosphorous with 66.29 and 33.71 % respectively. Soil erosion, land use runoff, rural domestic sewage, and livestock were the main sources of phosphorus with contribution ratios of 33.71, 45.73, 14.32, and 6.24 % respectively. Therefore, land use runoff, livestock, and soil erosion were identified as the main pollution sources to influence loads of NPS nitrogen and phosphorus in the Jinjiang River and should be controlled first. The method developed here provided a helpful guideline for conducting NPS pollution management in similar watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号