首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivariate geostatistical approaches have been applied extensively in characterizing risks and uncertainty of pollutant concentrations exceeding anthropogenic regulatory limits. Spatially delineating an extent of contamination potential is considerably critical for regional groundwater resources protection and utilization. This study used multivariate indicator kriging (MVIK) to determine spatial patterns of contamination extents in groundwater for irrigation and made a predicted comparison between two types of MVIK, including MVIK of multiplying indicator variables (MVIK-M) and of averaging indicator variables (MVIK-A). A cross-validation procedure was adopted to examine the performance of predicted errors, and various probability thresholds used to calculate ratios of declared pollution area to total area were explored for the two MVIK methods. The assessed results reveal that the northern and central aquifers have excellent groundwater quality for irrigation use. Results obtained through a cross-validation procedure indicate that MVIK-M is more robust than MVIK-A. Furthermore, a low ratio of declared pollution area to total area in MVIK-A may result in an unrealistic and unreliable probability used to determine extents of pollutants. Therefore, this study suggests using MVIK-M to probabilistically determine extents of pollutants in groundwater.  相似文献   

2.
Parametric statistical approaches, correlations and multiple linear regressions were used to develop models for the interpretation of hydrogeochemical parameters in the Western part of Delhi state, India. The hydrogeochemical parameters indicated that the groundwater quality is not safe for consumption. The water is moderately saline and the salinity level is increasing over time. There is also the problem of nitrate pollution. The correlation between electrical conductivity (EC) and other water quality parameters except potassium (K(+)), nitrate (NO(3)(-)) and bicarbonate (HCO(3)(-)) is significantly positive and Ca(++)+ Mg(++)/Na(+)+ K(+) is significantly negative. In predicting EC, the multiple R(2) values of 0.996 and 0.985 indicate that 99.6% and 98.5% variability in the observed EC could be ascribed to the combined effect of Na(+), HCO(3)(-), Cl(-), SO(4)(--), NO(3)(-) and Ca(++)+ Mg(++) for the year of 2005 and 2006 respectively. Out of 99.6% of the variability in EC in 2005, 51.2% was due to Cl(-) alone, and 8.5%, 12.5%, 6.1%, 14.7% and 6.7% were due to Na(+), HCO(3)(-), SO(4)(--), NO(3)(-) and Ca(++) + Mg(++). Similarly in 2006, out of 98.5% of the variability in EC, 48.5% was due to Cl(-) alone, and 10.4%, 12.7%, 5.3%, 17.2% and 4.4% were due to Na(+), HCO(3)(-), SO(4)(--), NO(3)(-) and Ca(++)+ Mg(++). The analysis shows that a good correlation exists between EC, Cl(-) and SO(4)(--) either individually or in combination with other ions and the multiple regression models can predict EC at 5% level of significance.  相似文献   

3.
The exploration, exploitation, and unscientific management of groundwater resources in the National Capital Territory (NCT) of Delhi, India have posed a serious threat of reduction in quantity and deterioration of quality. The objective of the study is to determine the groundwater quality and to assess the risk of groundwater pollution at Najafgarh, NCT of Delhi. The groundwater quality parameters were analyzed from the existing wells of the Najafgarh and the thematic maps were generated using geostatistical concepts. Ordinary kriging and indicator kriging methods were used as geostatistical approach for preparation of thematic maps of the groundwater quality parameters such as bicarbonate, calcium, chloride, electrical conductivity (EC), magnesium, nitrate, sodium, and sulphate with concentrations equal or greater than their respective groundwater pollution cutoff value. Experimental semivariogram values were fitted well in spherical model for the water quality parameters, such as bicarbonate, chloride, EC, magnesium, sodium, and sulphate and in exponential model for calcium and nitrate. The thematic maps of all the groundwater quality parameters exhibited an increasing trend of pollution from the northern and western part of the study area towards the southern and eastern part. The concentration was highest at the southernmost part of the study area but it could not reflect correctly the groundwater pollution status. The indicator kriging method is useful to assess the risk of groundwater pollution by giving the conditional probability of concentrations of different chemical parameters exceeding their cutoff values. Thus, risk assessment of groundwater pollution is useful for proper management of groundwater resources and minimizing the pollution threat.  相似文献   

4.
Groundwater and water resources management play a key role in conserving the sustainable conditions in arid and semi-arid regions. Applying some techniques that can reveal the critical and hot conditions of water resources seem necessary. In this study, kriging and cokriging methods were evaluated for mapping the groundwater depth across a plain in which has experienced different climatic conditions (dry, wet, and normal) and consequently high variations in groundwater depth in a 12 year led in maximum, minimum, and mean depths. During this period groundwater depth has considerable fluctuations. Results obtained from geostatistical analysis showed that groundwater depth varies spatially in different climatic conditions. Furthermore, the calculated RMSE showed that cokriging approach was more accurate than kriging in mapping the groundwater depth though there was not a distinct difference. As a whole, kriging underestimated the real groundwater depth for dry, wet, and normal conditions by 5.5, 2.2, and 5.3%, while cokriging underestimations were 3.3, 2, and 2.2%, respectively; which showed the unbiasedness in estimations. Results implied that in the study area farming and cultivation in dry conditions needs more attention due to higher variability in groundwater depth in short distances compared to the other climate conditions. It is believed that geostatistical approaches are reliable tools for water resources managers and water authorities to allocate groundwater resources in different environmental conditions.  相似文献   

5.
Perchlorate contamination was investigated in groundwater and surface water from Sivakasi and Madurai in the Tamil Nadu State of South India. Sensitive determination of perchlorate (LOQ?=?0.005 μg/L) was achieved by large-volume (500 μL) injection ion chromatography coupled with tandem mass spectrometry. Concentrations of perchlorate were <0.005–7,690 μg/L in groundwater (n?=?60), <0.005–30.2 μg/L in surface water (n?=?11), and 0.063–0.393 μg/L in tap water (n?=?3). Levels in groundwater were significantly higher in the fireworks factory area than in the other locations, indicating that the fireworks and safety match industries are principal sources of perchlorate pollution. This is the first study that reports the contamination status of perchlorate in this area and reveals firework manufacture to be the pollution source. Since perchlorate levels in 17 out of 57 groundwater samples from Sivakasi, and none from Madurai, exceeded the drinking water guideline level proposed by USEPA (15 μg/L), further investigation on human health is warranted.  相似文献   

6.
7.
Sewage sludge may be used as an agricultural fertilizer, but the practice has been criticized because sludge may contain trace elements and pathogens. The aim of this study was to compare the effectiveness of total and pseudototal extractants of Cu, Fe, Mn, and Zn, and to compare the results with the bioavailable concentrations of these elements to maize and sugarcane in a soil that was amended with sewage sludge for 13 consecutive years and in a separate soil that was amended a single time with sewage sludge and composted sewage sludge. The 13-year amendment experiment involved 3 rates of sludge (5, 10, and 20 t ha?1). The one-time amendment experiment involved treatments reflecting 50, 100, and 200 % of values stipulated by current legislation. The metal concentrations extracted by aqua regia (AR) were more similar to those obtained by Environmental Protection Agency (EPA) 3052 than to those obtained by EPA3051, and the strongest correlation was observed between pseudo(total) concentrations extracted by AR and EPA3052 and bioavailable concentrations obtained by Mehlich III. An effect of sewage sludge amendment on the concentrations of heavy metals was only observed in samples from the 13-year experiment.  相似文献   

8.
We assessed the potential of fluoride (F) contamination in drinking groundwater of an intensively cultivated district in India as a function of its lithology and agricultural activities. Three hundred and eight groundwater samples were collected at different depths from various types of wells and analyzed for pH, EC, NO(3)-N load and F content. A typical litholog was constructed and database on fertilizer and pesticide uses were also recorded for the district. The water samples were almost neutral in reaction and non-saline in nature with low NO(3)-N content (0.02 to 4.56 microg mL(-1)). Fluoride content in water was also low (0.01 to 1.18 microg mL(-1)) with only 2.27% of them exceeding 1.0 microg mL(-1) posing a potential threat of fluorosis. On average, its content varied little spatially and along depth of sampling aquifers because of homogeneity in lithology of the district. The F content in these samples showed a significant positive correlation (r = 0.12, P < or = 0.05) with the amount of phosphatic fertilizer (single super phosphate) used for agriculture but no such relation either with the anthropogenic activities of pesticide use or NO(3)-N content, pH and EC values of the samples was found. The results suggest that the use of phosphatic fertilizer may have some role to play in F enrichment of groundwater.  相似文献   

9.
Street dust was collected from five roads with different traffic volumes in the metropolitan area of Beijing and separated into five size fractions. Concentrations of polycyclic aromatic hydrocarbons (PAHs) adsorbed on street dust in different size ranges and their correlation with specific surface area and total organic carbon (TOC) were investigated. Results show that the concentration of 16-PAHs of sieved samples ranges from 0.27 to 1.30 mg/kg for all the sampling sites. Particles smaller than 40 μm in diameter have the highest 16-PAHs concentration among all of the size ranges for street dust from the four sampling sites with vehicles running on. PAHs with three or four rings account for 68% of the overall 16-PAHs on average. Remarkable positive correlation exists between 16-PAHs concentration and specific surface area with R 2 values from 0.7 to 0.96 for the four sampling sites with vehicles running on. The relationship between the concentration of 16-PAHs and TOC is less clear.  相似文献   

10.
用火焰原子吸收光谱法测定了苏州开发区26种蔬菜中的铜、锌、铁、锰和镍的含量。蔬菜样品用硝酸高氯酸混合酸进行消解。4次测定值的相对标准差<5%,加标回收率在92%~107%之间。26种蔬菜中铜、锌、铁、锰、镍的含量基本均在世贸组织规定的范围内。  相似文献   

11.
PAHs Contamination in Bank Sediment of the Yamuna River, Delhi, India   总被引:2,自引:0,他引:2  
This study was performed to elucidate the distribution, concentration trend and possible sources of PAHs in bank sediment of river Yamuna in Delhi, India. The levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were analyzed during pre-monsoon, monsoon and post-monsoon seasons in the sediment fraction < 53 μm. Reference standards and internal standards were used for identification and quantification of PAHs by HPLC. The sum of 16 PAH compounds ranged from 4.50 to 23.53 μg/g with a mean concentration of 10.15 ± 4.32 μg/g (dry wt.). Among 5 sites studied, the site, Income Tax Office (ITO) was found to be the hotspot attaining highest concentration. Predominance of 2–4 ring PAHs suggests a relatively recent local sources of PAHs in the study area. Moreover, molecular indices based source apportionment also illustrates pyrogenic source fingerprint of PAHs. No significant temporal trend was observed.  相似文献   

12.
Chemistry of groundwater in Gulbarga district, Karnataka, India   总被引:1,自引:0,他引:1  
Groundwater quality of Gulbarga District is extensively monitored for two years of study period from October 1999 to September 2001. Twenty-five different sampling stations were selected for the study purpose in the city and five selected villages in the district. Gulbarga districts lies in the northern plains of Karnataka State, covers an area of 16,244 km2 and lies between 16°-11′ and 17°-19′N latitude and 76°-54′E longitude The study revealed that the water sources in the area are heavily polluted. The major water quality parameters exceeding the permissible limits during all the seasons are total hardness, calcium hardness, magnesium hardness, alkalinity and MPN (Bacterial count) and other parameters have shown distinctive variation in different stations and season. Most of these parameters are correlated with one another. Statistical analysis of the data is presented.  相似文献   

13.
Biomass is an important entity to understand the capacity of an ecosystem to sequester and accumulate carbon over time. The present study, done in collaboration with the Delhi Forest Department, focused on the estimation of growing stock and the woody biomass in the so-called lungs of Delhi—the Asola-Bhatti Wildlife Sanctuary in northern Aravalli hills. The satellite-derived vegetation strata were field-inventoried using stratified random sampling procedure. Growing stock was calculated for the individual sample plots using field data and species-specific volume equations. Biomass was estimated from the growing stock and the specific gravity of the wood. Among the four vegetation types, viz. Prosopis juliflora, Anogeissus pendula, forest plantation and the scrub, the P. juliflora was found to be the dominant vegetation in the area, covering 23.43 km2 of the total area. The study revealed that P. juliflora forest with moderate density had the highest (10.7 m3/ha) while A. pendula forest with moderate density had the lowest (3.6 m3/ha) mean volume. The mean woody biomass was also found to be maximum in P. juliflora forest with moderate density (10.3 t/ha) and lowest in A. pendula forest with moderate density (3.48 t/ha). The total growing stock was estimated to be 20,772.95 m3 while total biomass worked out to be 19,366.83 t. A strong correlation was noticed between the normalized difference vegetation index (NDVI) and the growing stock (R 2?=?0.84)/biomass (R 2?=?0.88). The study demonstrated that growing stock and the biomass of the woody vegetation in Asola-Bhatti Wildlife Sanctuary could be estimated with high accuracy using optical remote sensing data.  相似文献   

14.
Yamuna, a prominent river of India covers an extensive area of 345,843 km(2) from Yamunotri glacier through six Indian states. Residues of organochlorine pesticides (OCPs) namely, isomers of HCH and endosulfan, DDT and its metabolites, aldrin, dieldrin, were analysed in water of river Yamuna along its 346 km stretch passing through Haryana-Delhi-Haryana and the canals originating from it. beta-HCH, p.p'-DDT, p.p'-DDE and p.p'-DDD had maximum traceability in test samples (95-100%) followed by gamma-HCH, alpha-HCH and o.p'-DDD (60-84%) and o.p'-DDT, delta-HCH and o.p'-DDE (7-30%) while aldrin, dieldrin, alpha and beta endosulfan remained below detection limits (BDL). The concentration of SigmaHCH and SigmaDDT at different sites of the river ranged between 12.76-593.49 ng/l (with a mean of 310.25 ng/l) and 66.17-722.94 ng/l (with a mean of 387.9 ng/l), respectively. In canals the values were found between 12.38-571.98 ng/l and 109.12-1572.22 ng/l for SigmaHCH and SigmaDDT, respectively. Water of Gurgaon canal and Western Yamuna canal contained maximum and minimum concentration, respectively both of SigmaHCH and SigmaDDT residues. Sources of these pesticides and suggested measures to check pesticide pollution of this major Indian river, keeping in view its vital link with life, are discussed in this paper.  相似文献   

15.
利用离子交换树脂对降水中的铜、锌、镉、铁、锰等金属元素进行富集,之后经3 mol/L的盐酸进行洗脱,最后用火焰原子吸收分光光度法进行测定。该方法成本较低,操作简便,方法灵敏度高,方法检出限接近ppb级,对于降水中痕量金属元素的测定,结果令人满意。  相似文献   

16.
Role of meteorology in seasonality of air pollution in megacity Delhi,India   总被引:1,自引:0,他引:1  
The winters in megacity Delhi are harsh, smoggy, foggy, and highly polluted. The pollution levels are approximately two to three times those monitored in the summer months, and the severity is felt not only in the health department but also in the transportation department, with regular delays at airport operations and series of minor and major accidents across the road corridors. The impacts felt across the city are both manmade (due to the fuel burning) and natural (due to the meteorological setting), and it is hard to distinguish their respective proportions. Over the last decade, the city has gained from timely interventions to control pollution, and yet, the pollution levels are as bad as the previous year, especially for the fine particulates, the most harmful of the criteria pollutants, with a daily 2009 average of 80 to 100 μg/m3. In this paper, the role of meteorology is studied using a Lagrangian model called Atmospheric Transport Modeling System in tracer mode to better understand the seasonality of pollution in Delhi. A clear conclusion is that irrespective of constant emissions over each month, the estimated tracer concentrations are invariably 40% to 80% higher in the winter months (November, December, and January) and 10% to 60% lower in the summer months (May, June, and July), when compared to annual average for that year. Along with monitoring and source apportionment studies, this paper presents a way to communicate complex physical characteristics of atmospheric modeling in simplistic manner and to further elaborate linkages between local meteorology and pollution.  相似文献   

17.
Simulation models are used to aid the decision makers about water pollution control and management in river systems. However, uncertainty of model parameters affects the model predictions and hence the pollution control decision. Therefore, it often is necessary to identify the model parameters that significantly affect the model output uncertainty prior to or as a supplement to model application to water pollution control and planning problems. In this study, sensitivity analysis, as a tool for uncertainty analysis was carried out to assess the sensitivity of water quality to (a) model parameters (b) pollution abatement measures such as wastewater treatment, waste discharge and flow augmentation from upstream reservoir. In addition, sensitivity analysis for the “best practical solution” was carried out to help the decision makers in choosing an appropriate option. The Delhi stretch of the river Yamuna was considered as a case study. The QUAL2E model is used for water quality simulation. The results obtained indicate that parameters K 1 (deoxygenation constant) and K 3 (settling oxygen demand), which is the rate of biochemical decomposition of organic matter and rate of BOD removal by settling, respectively, are the most sensitive parameters for the considered river stretch. Different combinations of variations in K 1 and K 2 also revealed similar results for better understanding of inter-dependability of K 1 and K 2. Also, among the pollution abatement methods, the change (perturbation) in wastewater treatment level at primary, secondary, tertiary, and advanced has the greatest effect on the uncertainty of the simulated dissolved oxygen and biochemical oxygen demand concentrations.  相似文献   

18.
The north eastern part of Anantapur district is in the state of Andhra Pradesh, India, is significant as it is covered by varied geological formations and has different land use and irrigation practices. Though ground water is the major drinking water source, deterioration in its quality is going unchecked. In such agro-economy based rural areas, the nitrate contamination is rampant and much attention has not been drawn towards this anthropogenic pollution. In the study area ground water samples from different hydrogeological set-up have been collected during the pre and post monsoon seasons and analysed for the major ions such as Ca, Mg, Na, K, CO(3), HCO(3), Cl, SO(4), NO(3) and F. The study revealed that 65% of the samples were found to be unsuitable for drinking purposes in the pre monsoon season and 45% in the post monsoon due to excess nitrate (>45 mg/l) content in the ground water. Among the different seasons and environs, nitrate was in highest concentration in the granitic terrain and canal command areas during pre monsoon season. The nitrate was found to decrease with depth in all the hydrogeological set-ups in both the seasons. Intense agriculture practices, improper sewerage and organic waste disposal methods were observed to contribute nitrate to the shallow and moderately deep aquifers.  相似文献   

19.
This study investigated the arsenic (As) level in groundwater, and the characteristics of aquifer sediment as related to the occurrence of As in groundwater in Hanam, Vietnam. The deposition and transport of As-containing substances through rivers were also examined. Arsenic concentrations in 88% of the groundwater samples exceeded the As limit for drinking water based on the WHO standards. The dominating form of arsenic was As(III). The maximum total As content in bore core sediment was found in a peat horizon of the profiles and generally, elevated levels of As were also found in other organic matter-rich horizons. Total As contents of the bore core sediments were significantly correlated with crystalline iron oxide, silt and clay contents, suggesting that As in aquifer sediment was mainly associated with iron (hydr)oxides and clay mineral. In the groundwater, As concentration showed significant correlations with the total concentrations of Fe and HCO (3)(-). Significant correlations between HCl-extractable As and non-crystalline Fe oxide, total C, N, and S were also observed in the profiles. The results support the hypothesis that under favorable reductive conditions established by the degradation of organic matter, the dissolution of iron (hydr)oxides releases adsorbed As into the groundwater. The deposition of As in the sediments from the Red River were significantly higher than that in the Chau Giang River, suggesting that the Red River is the main source of As-containing substances deposited in the study area.  相似文献   

20.
This study presents concentrations of iron, manganese, zinc, and copper in selected tissues of two fish species: pike (Esox lucius L.) and bream (Abramis brama L.) living in lakes Ińsko and Wisola, Northwestern Poland. The lakes differ in their trophic status. The effect of gender and environmental conditions on metals accumulation was also investigated. Metal analyses were performed using inductively coupled plasma atomic emission spectroscopy. Considering all studied fish species and tissues, the average metal concentrations (micrograms per gram wet weight) in both lakes occurred in the following ranges: Fe 0.8–240.6, Mn 0.2–8.4, Zn 3.0–185.9, and Cu 0.14–7.76. The lowest levels of the studied metals were always detected in the muscles. The spleen, kidneys, and liver were found to accumulate the highest amounts of Fe. In the case of the other metals, the highest levels were found, as follows: Mn in skin, gills, and gonads, Zn in digestive tract and gills, Cu in liver. Heavy metal content in fish gonads was observed to be sex dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号