首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detritus as food for estuarine copepods   总被引:9,自引:0,他引:9  
A variety of detrital foods derived from marsh plants were fed to the copepods Eurycemora affinis and Scottolana canadensis. The copepods did not survive well or produce eggs when feeding on detritus with smaller amounts of microbiota, but did well when a rich and abundant microbiota was present. Ciliated protozoans appear to be particularly important in the transfer of detrital energy to copepods.Contribution No. 703, Center for Environmental and Estuarine Studies, University of Maryland.  相似文献   

2.
Omnivorous feeding behavior of the Antarctic krill Euphausia superba   总被引:5,自引:0,他引:5  
Feeding experiments were conducted at Palmer Station from December 1985 to February 1986 to examine the potential role of copepod prey as an alternative food source for Euphausia superba. Copepod concentration, copepod size, phytoplankton concentration, the duration of krill starvation and the volume of experimental vessels were altered to determine effects on ingestion and clearance rates. Krill allowed to feed on phytoplankton and copepods in 50-litre tubs showed greatly increased feeding rates relative to animals feeding in the much smaller volumes of water traditionally used for krill-feeding studies. Clearance rates on copepods remained constant over the range of concentrations offered, but clearance rates on phytoplankton increased linearly with phytoplankton concentration. Feeding rates increased when larger copepods were offered and when krill were starved for two weeks prior to experiments. Clearance rates of krill feeding on copepods were higher than, but not correlated with, their clearance rates on phytoplankton in the same vessel. E. superba may have a distinct mechanism for capturing copepods, perhaps through mechanoreception. Although our observed clearance rate of 1055 ml krill-1 h-1 indicates that krill can feed very efficiently on copepod prey, such feeding would meet less than 10% of their minimum metabolic requirements at the typical copepod concentrations reported for Antarctic waters. However, substantial energy could be gained if krill fed on the patches of high copepod concentrations occasionally reported during the austral summer, or if krill and copepods were concentrated beneath the sea ice during the winter or spring months. Our results, indicating efficient feeding on zooplankton and higher clearance rates on phytoplankton than previously believed, represent a step towards balancing the energy budget of E. superba in Antarctic waters.  相似文献   

3.
Grazing rates of larger (Calanus finmarchicus) and smaller (Acartia clausii Pseudocalanus elongatus etc.) copepods on naturally occurring phytoplankton populations were measured during a declining spring phytoplankton bloom. During the initial period, dominated by Chaetoceros spp. diatoms, constant ingestion rates were observed in Calanus finmarchicus at suspended particulate concentrations above 300 g carbon l-1. Average daily intake during this time amounted to 35 to 40% of body carbon and reached a maximum of 50%. The feeding response of the smaller copepods was not so well defined, although a maximum daily intake of 56% body carbon was recorded. In both groups, feeding thresholds were at particulate concentrations around 50 g C l-1. The feeding response of C. finmarchicus was correlated with both a change in their own population and in the food cell type. Linear regressions describing the concentration-dependent feeding response were: ingestion rate (IR)=1.16 total particulate volume (TPV)-36.15 during the initial part of the period compared with IR=0.41 TPV-12.18 for the latter period. C. finmarchicus filtered out slightly larger (x 1.2 diameter) particles than the small copepods and, in both groups, some filtering adjustment was made to accomodate to modal changes in the phytoplankton population from 20–30 m to 10 m diameter cells. Particle production during feeding was frequently evident in the smallest size ranges of particles and the ratio of particle production to ingestion rate was greater at low feeding rates.  相似文献   

4.
Organic matter was released into sea water from dead mangrove leaves, under both biotic and abiotic conditions. Particulate matter (flakes) formed in the leachates under both conditions. Flakes cultured in the laboratory and flakes obtained from natural environments were colonized by microbial organisms and were utilized as food by copepods, amphipods, isopods, crabs and shrimps. This suggests an alternative pathway of energy transfer to that in the classical plant-grazer-carnivore communities. Since the leaching of organic matter from plant material and the formation of particulate matter from dissolved organic carbon are faster than the grazing of fallen leaves by metazoans, the alternative pathway may result in a faster rate of energy transfer from vascular plants to higher trophic levels than is found in grazer communities.  相似文献   

5.
Sinking rates of natural copepod fecal pellets   总被引:4,自引:0,他引:4  
Many pure samples of natural fecal pellets have been collected from mixed small copepods and from the pontellid copepod Anomalocera patersoni in the Ligurian Sea, using a specially designed pellet collection device. Sinking rates of fresh pellets and pellets aged up to 33 days have been determined at 14°C, the mean temperature of the essentially isothermal water column in the Ligurian Sea. Sinking rates of pellets collected during calm sea states increased with increasing pellet volume, but sinking rates of pellets collected during rough sea (Beaufort scale 6) showed little correlation with pellet size. Much of the variability in the sinking rate-pellet size relationships was the result of different pellet composition and compaction, but not pellet age. Pellets produced from laboratory diets of phytoplankton and phytoplankton-sediment mixes showed the expected wide variability in sinking rates, with sediment-ballasted pellets sinking much faster than pellets produced from pure algal diets; thus determination of vertical material fluxes in the sea using laboratory-derived fecal pellet sinking rates is unwarranted. Natural pellet sinking data for small copepods and A. patersoni have been combined with similar data for euphausiids, to yield sinking rates of roughly two orders of magnitude over three orders of magnitude in pellet volume. Pellets from small copepods sank at speeds too slow to be of much consequence to rapid material flux to the deep sea, but they undoubtedly help determine upper water distribution of materials. Recalculation of fecal pellet mass flux estimates from the literature, using our sinking rate data for natural small copepod pellets, yielded estimates about half those of previously published values. Earlier studies had concluded that small fecal pellets were of lesser significance to total material flux than fecal matter; our recalculation strengthens that conclusion. Pellets from large copepods and euphausiids, however, have the capability to transport materials to great depths, and probably do not substantially recycle materials near the surface. The fact that the majority of pellets which had previously been collected in deep traps by other workers were of a size comparable to pellets from our large copepods supports the contention that these larger pellets are the main ones involved in vertical flux.  相似文献   

6.
Food selection capabilities of the estuarine copepod Acartia clausi   总被引:2,自引:0,他引:2  
Existing viewpoints and theories of selective grazing by copepods are briefly reviewed in order to formulate explicit hypotheses to be tested experimentally. Based on these hypotheses, a series of grazing experiments was run to determine (1) the extent of the selective ingestion capabilities of Acartia clausi and (2) how these capabilities were affected by previous feeding histories. Groups of copepods were separately preconditioned on a small diatom (Thalassiosira pseudonana), a large diatom (T. fluviatilis), or a plastic sphere. The ingestive behavior was then examined on various combinations of spheres and food particles. Spheres offered alone were not ingested. In mixtures of diatoms and spheres, the copepods avoided ingesting spheres intermediate in size between the sizes of the diatoms. The copepods either ingested particles on either side of the spheres, or ignored all particles less than the size of the largest spheres. The pattern observed depended upon the size of the preconditioning food. However, if the spheres were larger than the largest food particles, the copepods still selectively ingested the food particles. The above results demonstrate that A. clausi has a complex grazing behavior consisting of (1) more efficient grazing on larger particles within its particle-size ingestion range; (2) the ability to alter effective setal spacing to optimize feeding behavior (i.e., the ability to increase efficiency of capture of food particles, and to avoid non-food particles); and (3) the ability for post-capture rejection of non-food particles when they interfere with the ingestion of food particles on which the copepod has been preconditioned. The behavioral patterns observed depend heavily on the food preconditioning and the presence or absence of non-food particles. These results clearly indicate that a simple mechanistic explanation of selective grazing is insufficient.  相似文献   

7.
The feeding behaviors of Acartia clausi and A. tonsa were measured in samples of water containing low levels of a water-accommodated fraction of No. 2 fuel oil. The copepods fed normally at a hydrocarbon concentration of 70 g l-1, but their feeding behavior was altered both quantitatively and qualitatively at a concentration of 250 g l-1. Three types of response to the higher oil level were found. The first was total suppression of feeding. Both other types involved suppression of feeding on particles between 7 and 15 m diameter, but one showed no change in the ingestion of larger particles, whereas the other displayed increased feeding on particles larger than 15 m diameter. These results suggest that the species of Acartia studied use three different modes of feeding, each on a different size range of particulate material. Low-level hydrocarbon pollution affects each feeding mode differently.Contribution No. 973, Center for Environmental and Estuarine Studies of the University of Maryland  相似文献   

8.
The feeding structures or houses of the giant larvacean Bathochordaeus sp. serve as both habitat and food for the calanoid copepod Scopalatum vorax. Gut contents of S. vorax include both microbial and metazoan associates of larvacean houses, and possibly the house-mucus matrix itself. Copepods were observed and collected from larvacean houses between 100 and 500 m in Monterey Bay, California, using a submersible ROV (remotely operated vehicle) from the Monterey Bay Aquarium Research Institute. Gut contents were compared to potential food items on the houses and in the open water (not associated with the house). Copepods were generalist feeders, with amorphous detritus, diatoms, and copepods or other crustacean parts dominating gut contents. Protozoans and algae other than diatoms were rarer in guts. Houses contained a diverse assemblage of microplankton and metazoans, both intact specimens and detrital remains of these. Numbers of diatoms and fecal pellets were enriched by 1 to 3 orders of magnitude on houses compared to numbers in surrounding water. Many of the abundant species of diatoms and copepods on houses occurred in S. vorax guts. This observation coupled with S. vorax feeding habits observed in situ and in the laboratory provide evidence for feeding on houses. S. vorax appears to possess special adaptations to living in a resource-limited environment, such as gorging as a feeding adaptation, chemosensory structures to help locate houses, and the ability to change feeding modes. Consumption of detritus at depth by S. vorax provides evidence that metazoans contribute to remineralization of particulate organic carbon in the mesopelagic zone.  相似文献   

9.
E. J. H. Head 《Marine Biology》1992,112(4):583-592
The results presented here were obtained at six locations during three cruises in 1985 (off the coast of Labrador), 1986 (at the eastern end of Viscount Melbourne Sound) and 1988 (off the coast of Labrador). In situ chlorophyll maximum concentrations were >7 gl-1 at depths of between 0 and 30 m in all sampling areas. In feeding experiments copepods attained higher gut pigment concentrations the longer they had been previously starved and higher concentrations when fed in the dark than when fed in the light. Community ingestion rates calculated from changes in particulate chlorophyll were higher than estimates derived from gut pigment data except when copepods had been starved for 24 h. Differences between estimates by the two methods suggested pigment destruction. In feeding experiments pigment: biogenic silica ratios in food and faecal pellets suggested that the length of starvation period affected the degree of pigment destruction differently at different stations and that feeding in the light greatly increased pigment destruction. A comparison of pigment: silica ratios in the water column, and in faecal pellets collected from copepods which had fed there, suggested that pigment destruction may occur in situ sometimes and that the degree to which it occurs may be affected by feeding history, light, diel feeding behaviour and species composition.  相似文献   

10.
E. J. H. Head 《Marine Biology》1992,112(4):593-600
Faecal pellets were collected in 1988 from copepods which had fed in situ or in laboratory experiments, using screened natural seawater as food, at two stations off the coast of Labrador and one in the Gulf of St. Lawrence. The chemical composition of the pellets and of particulate material in profiles and in laboratory food were measured in terms of particulate carbon, carbohydrate (soluble and insoluble), protein and lipid. Faecal pellet composition was somewhat similar in all experiments at the first two stations, where the compositions of particulate material in situ and copepod species assemblages were also similar. At the third station the compositions of faecal pellets and particulate material were slightly different from those at the other stations and the copepod species composition varied between sampling times. Faecal pellets at the first two stations had very low levels of soluble carbohydrate, while concentrations in the food were generally high, suggesting that it was efficiently metabolized by copepods, although it might have been absent because of sloppy feeding or release, after passage through the gut, in soluble form or from faecal pellets. Comparisons of POC: biogenic silica ratios in food and faecal pellets, calculated using data presented elsewhere (Head 1992; Mar. Biol. 112: 583–592), suggested that at these stations, where food concentrations were high (chlorophyll concentrations>8 gl-1), copepods may have been assimilating carbon rather inefficiently.  相似文献   

11.
The vertical distribution of chlorophylla, copepods, dissolved free amino acid concentration and the fixation of14C by phytoplankton were monitored in the springs of 1983, 1987 and 1988 in the Ushant front region, shelf edge of the Celtic Sea and central Irish Sea, respectively. In each area, two stations characterized by mixed and stratified water conditions were compared. Vertical distributions of amino acids coincided with the distribution of copepods. A positive and significant correlation was found between the abudance of copepods and the concentration of amino acids dissolved in seawater. A negative and significant correlation was found between chlorophylla and the concentration of amino acids. Enrichment of amino acids ( 20 to 500 nM l–1 at specific depths) due to aspartic and glutamic acids, glutamine and ornithine, was assumed to reflect copepod feeding activity and faecal production. At these depths, the natural concentration and diversity of amino acids, including aspartic acid, glutamic acid, asparagine, serine, histidine, glutamine, arginine, threonine, glycine, alanine, tyrosine, valine, phenylalanine, ornithine and lysine, were high enough and in the correct proportions for triggering feeding and swimming and swarming behavior of copepods, as well as their remote detection of food at the micro- and meso-scales (1 to 10 m). This accumulation of amino acids also constitutes a potential additional source of organic nitrogen for bacteria and phytoplankton.  相似文献   

12.
We examined the degree of mesoscale (km), finescale (m), and microscale (cm) patchiness of ciliates and their prey in waters of varying hydrographic conditions. Samples were taken throughout the water column, along a transect across the Irish Sea (54°N), at scales ranging from 0.15 to 105 m. We examined physical, chemical, and biological characteristics. The eastern and western Irish Sea were stratified, with a pycnocline at ∼20 to 30 m. The central waters were mixed and had adjacent frontal regions. Euphotic depth was ∼20 to 35 m. Generally, the upper waters were nitrogen-limited, with elevated levels associated with frontal regions and deeper waters. Microphytoplankton exhibited fine-mesoscale patchiness: diatom numbers were low in stratified waters, with higher levels in mixed and frontal regions; dinoflagellates were abundant in subsurface waters near the fronts. Nanoflagellate numbers and biomass decreased with depth below the pycnocline, and exhibited microscale distribution in upper waters; these micropatches may provide increased food levels for ciliates. Microscale distribution of ciliates was rare and only occurred at mixed/frontal sites; finescale ciliate patches were a more prominent feature of the water column. These finescale patches can be composed of a variety of taxa but can also be virtually monospecific. Finescale patches may produce localised regions of high productivity that is available to fishes and copepods, but may also be a sink, as patches can be short-lived and thus unavailable to predators. Received: 28 September 1998 / Accepted: 26 January 1999  相似文献   

13.
Accumulation of the bi-cyclic aromatic hydrocarbon 14C-1-naphthalene in adult female Calanus helgolandicus Claus and adult female Eurytemora affinis Poppe in sea water concentrations of hydrocarbon ranging from 0.2 to 992 g/l was studied during exposure periods of up to 15 days as part of an investigation of the possible effects on marine zooplankton of persistent exposure to low levels of petroleum hydrocarbons. With both species the body levels of radioactivity increased rapidly during the first few days of the exposure period, but after exposure for 7 to 8 days to sea water containing 50 g hydrocarbon/l an equilibrium condition was approached; in some experiments where E. affinis was exposed to 1.0 and 10 g hydrocarbon/l for 15 days there was no further increase in body levels of radioactivity after 7 to 8 days. Using a low concentration of hydrocarbon (1 g/l), the quantity of radioactivity accumulated after 10 days was found to be nearly fifty times greater in the smaller species, E. affinis, than in C. helgolandicus, when expressed in terms of body weight. After they had been exposed to the hydrocarbon for several days the copepods contained a considerable proportion of radioactivity that was no longer identifiable as naphthalene and was presumably present as metabolites. Radioactivity accumulated in the copepods after several days was rapidly lost after they were transferred to uncontaminated sea water: e.g. C. helgolandicus lost nearly 90% of its body level of radioactivity in 24 h. Thereafter the rate of loss was greatly reduced, and 5% of the original body level of radioactivity still remained in the copepods at the end of 11 days. Experiments on the breakdown of naphthalene added at low concentrations to sea water samples containing natural microbial populations indicated degradation rates of 0.1 to 0.2 g/l/24 h in oceanic water, and 2.6 g/l/24 h in inshore water samples. The results are discussed in terms of the possible transfer of hydrocarbon to a higher trophic level in areas subjected to constant low-level inputs of petroleum hydrocarbons.  相似文献   

14.
Sternoptyx diaphana Hermann is a non-migrating hatchetfish inhabiting the mesopelagic zone between 300 and 1500 m in temperate to tropical oceanic regions. An analysis is presented of the diet of this species, collected from 5 oceanic faunal provinces—the Pacific Subantarctic, and 4 subregions of the North Atlantic Ocean. Stomach analyses of 20 to 40 mm specimens revealed considerable intra-trawl (fish to fish), intraregional (Station to station), and inter-regional variation in size and composition of the diet. Generic composition of stomach contents differed noticeably from region to region, with the highest degree of faunal affinity being only 38%. The dominant food items both in terms of biomass and abundance also varied inter-regionally, with fish, euphausiids, or decapods predominant by weight; and euphaussids, copepods, or amphipods most prevalent by number. Differences in size distribution of food items from region to region were also noted. S. diaphana from regions of cooler overlying water masses fed on fewer but larger prey items, and diet was less diverse than that of fish from warmer waters. The diet consists primarily of omnivorous and carnivorous prey, and there is evidence that larger specimens feed on larger food items. The broad size-distribution and taxonomic spectrum of the prey, features of functional morphology, and low density as inferred from trawl catches, indicate that S. diaphana is a predator of limited pursuit capability. Feeding strategy appears to involve capture of the nearest available prey within its immediate vicinity.  相似文献   

15.
We investigated the impact of copepods on the seston community in a mesocosm set-up, and assessed how the changes in food quantity, quality and size affected the condition of the grazers, by measuring the RNA:DNA ratios in different developmental stages of Calanus finmarchicus. Manipulated copepod densities did not affect the particulate carbon concentration in the mesocosms. On the other hand, chlorophyll a content increased with higher copepod densities, and increasing densities had a positive effect on seston food quality in the mesocosms, measured as C:N ratios and 3:6 fatty acid ratios. These food quality indicators were significantly correlated to the nutritional status of C. finmarchicus. In contrast to our expectations, these results suggest a lower copepod growth potential on higher quality food. However, in concordance with earlier studies, we found that when copepods were in high densities the large particles (>1000 µm3) decreased and that the smaller particles (<1000 µm3) increased in number. These patterns were closely linked to the condition of C. finmarchicus, which were of better condition (RNA:DNA ratios) with increasing biovolumes of large particles, and, conversely, lower RNA:DNA ratios with increasing biovolumes of smaller particles. Consequentially, the selective grazing by copepods stimulated increased biovolumes of smaller plankton, and this increase was responsible for the increased food quality, in terms of C:N and 3:6 ratios. Thus, we conclude that the decreasing growth potentials of C. finmarchicus were a result of a decrease of favourably sized food particles, induced by copepod grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
Two suites of phytoplankton samples have been collected in consecutive years at various times over a day from selected depths within vertically mixed and stratified water columns in the western Irish Sea, in order to provide a range of possible light histories within the populations collected. Values for the maximum rate of 14C retention (P max) and the initial slope of the 14C retention: light intensity curve () were obtained. Supra-thermocline samples from the stratified water exhibited higher P max values than corresponding subthermocline samples. Higher values of were also generally associated with samples from the supra-thermocline zone of the stratified region. Differences in the depth distribution of P max and in the mixed water were small, except in the presence of a shallow thermocline. In one suite of samples from the stratified water, a diurnal increase in the P max values of the supra-thermocline samples was observed. P max values obtained from the samples from the mixed water were interpreted in relation to the distribution obtained from the samples from the stratified zone. Data from both the contrasting sites visited for one sample suite demonstrated a two-phase relationship between the chlorophyll a concentration and both P max and . The rates of 14C retention of the first suite of samples were estimated by two techniques. The average differences in the retention were greater in samples from the sub-as opposed to suprathermocline zone. No trends were apparent in the smaples from the mixed waters.  相似文献   

17.
Gorgonians are passive suspension feeders, contributing significantly to the energy flow of littoral ecosystems. More than in active suspension feeders (such as bivalves, ascidians and sponges) their prey capture is affected by spatial and temporal prey distribution and water movement. Corallium rubrum is a characteristic gorgonian of Mediterranean sublittoral hard bottom communities. This study found a high variability in the annual cycle of prey capture rate, prey size and ingested biomass, compared to other Mediterranean gorgonians. Detrital particulate organic matter (POM) was found throughout the year in the polyp guts and constituted the main proportion of the diet (25–44%). Crustacean fragments and copepods (14–46%) accounted for the second major proportion, while invertebrate eggs (9–15%) and phytoplankton (8–11%) constituted the smallest part of the diet. To verify the importance of detrital POM in the energy input of this precious octocoral species, in situ experiments were carried out during the winter–spring period. The results confirm the importance of detrital POM as the main source of food for C. rubrum [0.13±0.04 μg C polyp−1 h−1 (mean±SD)]. This study also compares the prey capture rates of two colony size classes and two depth strata: Within the same patch, small colonies (<6 cm height) captured significantly more prey per polyp (0.038±0.09 prey polyp−1 h−1) than larger colonies (>10 cm high) (0.026±0.097 prey polyp−1 h−1) and showed a higher proportion of polyps containing prey (17% compared to 10%). Comparing colonies of similar size (<6 cm height) revealed that the colonies situated at 40 m depth captured significantly more prey (0.038±0.09 prey polyp−1 h−1) than the ones at 20 m (0.025±0.11 prey polyp−1 h−1). One pulse of copepods was recorded that constituted 16% of all captured prey during the 15-month period studied in one of the sampled populations. The data suggest that the variability of hydrodynamic processes may have a higher influence on the feeding rate than seasonal changes in the seston composition. The carbon ingestion combined with data on the density of the exploited population results in 0.4–9.6 mg C m−2 day−1. The grazing impact of current, heavily exploited and small-sized populations is comparable to that of larger Mediterranean gorgonians, suggesting that unexploited red coral populations may have a high impact compared with other passive suspension feeders.  相似文献   

18.
气溶胶中正构烷烃的碳优先指数研究   总被引:9,自引:0,他引:9  
本文研究了北京、广州两地不同季节气溶胶颗粒物上正构烷烃的碳优先指数值(CPI)随季节和颗粒物粒径的变化规律。结果表明,北京地区气溶胶中正构烷烃的CPI值:春>夏>秋>冬;广州地区为冬>春>夏,显示了不同的地区特征,而且随着气溶胶颗粒物粒径的减小,正构烷烃的CPI值亦减小。  相似文献   

19.
Some aspects of osmoregulation energetics have been studied in the euryhaline teleost Tilapia mossambica (Peters) acclimated to media of different salinities. In stress media (75 and 100% sea water) the blood glucose of the fish increases significantly, accompanied by a corresponding increase in oxygen consumption and cytochrome-oxidase activity, suggesting that oxidative degradation of blood glucose is the predominant energy source for osmotic work in these stress media. It is likely that the variations in the blood-glucose level as a function of acclimation to the heterosmotic media —except the natural fresh-water medium — are governed by the combined effects of salinity of the medium and blood-medium osmotic gradient, rather than by the effect of any one of them separately. Perhaps, metabolic homoeostasis is in operation in the natural fresh-water medium. Depletion of muscle glycogen at significant levels is noticed only in stress media. Presumably, there is an augmentation of oxidative metabolism with glycolysis to meet the exacting energy demands for heavy osmotic work in high-stress media. Prior acclimation to 75% sea water (24.375 S) facilitates subsequent acclimation to 100% sea water (32.50 S) with less energy cost —an instance of facilitation acclimation. Smaller individuals of T. mossambica osmoregulate with less energy expenditure than larger ones. Thus, smaller individuals are osmotically more efficient.  相似文献   

20.
Rapid mass sinking of cells following diatom blooms, observed in lakes and the sea, is argued here to represent the transition from a growing to a resting stage in the life histories of these algae. Mass sinking is of survival value in those bloom diatoms that retain viability over long periods in cold, dark water but not in warm, nutrient-depleted surface water. Mechanisms for accelerating sinking speed of populations entering a resting or seeding mode are proposed. Previously unexplained features of diatom form and behaviour take on a new meaning in this context of diatom seeding strategies. Diatoms have physiological control over buoyancy as declining growth is accompanied by increasing sinking rates, where the frustule acts as ballast. Increased mucous secretion in conjunction with the cell protuberances characteristic of bloom diatoms leads to entanglement and aggregate formation during sinking; the sticky aggregates scavenge mineral and other particles during descent which further accelerates the sinking rate. Such diatom flocs will have sinking rates of 100 m d-1 or more. This is corroborated by recent observations of mass phytoplankton sedimentation to the deep sea. This mechanism would explain the origin of marine snow flocs containing diatoms in high productivity areas and also the well-known presence of a viable deep sea flora. That mortality is high in such a seeding strategy is not surprising. A number of species-specific variables pertaining to size, morphology, physiology, spore formation and frustule dissolution rate will determine the sinking behaviour and thus control positioning of resting stages in the water column or on the bottom. It is argued that sinking behaviour patterns will be environmentally selected and that some baffling aspects of diatom form and distribution can be explained in this light. Rapid diatom sedimentation is currently believed to be mediated by zooplankton faecal pellets, particularly those of copepods. This view is not supported by recently published observations. I speculate that copepod grazing actually retards rather than accelerates vertical flux, because faecal pellets tend to be recycled within the surface layer by the common herbivorous copepods. Egestion of undigested food by copepods during blooms acts as a storage mechanism, as ungrazed cells are likely to initiate mass precipitation and depletion of the surface layer in essential elements. Unique features of diatoms are discussed in the light of their possible evolution from resting spores of other algae. An evolutionary ecology of pelagic bloom diatoms is deduced from behavioural and morphological characteristics of meroplanktonic and tychopelagic forms. Other shell-bearing protistan plankters share common features with diatoms. Similar life-history patterns are likely to be present in species from all these groups. The geological significance of mass diatom sinking in rapidly affecting transfer of biogenic and mineral particles to the sea floor is pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号